2019-2020年高中數(shù)學(xué)復(fù)習(xí)講義 第九章 圓錐曲線.doc
《2019-2020年高中數(shù)學(xué)復(fù)習(xí)講義 第九章 圓錐曲線.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)復(fù)習(xí)講義 第九章 圓錐曲線.doc(13頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)復(fù)習(xí)講義 第九章 圓錐曲線 定義 標(biāo)準(zhǔn)方程 【知識(shí)圖解】 圓錐曲線 雙曲線 橢圓 拋物線 幾何性質(zhì) 定義 幾何性質(zhì) 標(biāo)準(zhǔn)方程 定義 幾何性質(zhì) 標(biāo)準(zhǔn)方程 圓錐曲線應(yīng)用 【方法點(diǎn)撥】 解析幾何是高中數(shù)學(xué)的重要內(nèi)容之一,也是銜接初等數(shù)學(xué)和高等數(shù)學(xué)的紐帶。而圓錐曲線是解析幾何的重要內(nèi)容,因而成為高考考查的重點(diǎn)。研究圓錐曲線,無外乎抓住其方程和曲線兩大特征。它的方程形式具有代數(shù)的特性,而它的圖像具有典型的幾何特性,因此,它是代數(shù)與幾何的完美結(jié)合。高中階段所學(xué)習(xí)和研究的圓錐曲線主要包括三類:橢圓、雙曲線和拋物線。圓錐曲線問題的基本特點(diǎn)是解題思路比較簡(jiǎn)單清晰,解題方法的規(guī)律性比較強(qiáng),但是運(yùn)算過程往往比較復(fù)雜,對(duì)學(xué)生運(yùn)算能力,恒等變形能力,數(shù)形結(jié)合能力及綜合運(yùn)用各種數(shù)學(xué)知識(shí)和方法的能力要求較高。 1. 一要重視定義,這是學(xué)好圓錐曲線最重要的思想方法,二要數(shù)形結(jié)合,既熟練掌握方程組理論,又關(guān)注圖形的幾何性質(zhì). 2.著力抓好運(yùn)算關(guān),提高運(yùn)算與變形的能力,解析幾何問題一般涉及的變量多,計(jì)算量大,解決問題的思路分析出來以后,往往因?yàn)檫\(yùn)算不過關(guān)導(dǎo)致半途而廢,因此要尋求合理的運(yùn)算方案,探究簡(jiǎn)化運(yùn)算的基本途徑與方法,并在克服困難的過程中,增強(qiáng)解決復(fù)雜問題的信心,提高運(yùn)算能力. 3.突出主體內(nèi)容,要緊緊圍繞解析幾何的兩大任務(wù)來學(xué)習(xí):一是根據(jù)已知條件求曲線方程,其中待定系數(shù)法是重要方法,二是通過方程研究圓錐曲線的性質(zhì),往往通過數(shù)形結(jié)合來體現(xiàn),應(yīng)引起重視. 4.重視對(duì)數(shù)學(xué)思想如方程思想、函數(shù)思想、數(shù)形結(jié)合思想的歸納提煉,達(dá)到優(yōu)化解題思維、簡(jiǎn)化解題過程 第1課 橢圓A 【考點(diǎn)導(dǎo)讀】 1. 掌握橢圓的第一定義和幾何圖形,掌握橢圓的標(biāo)準(zhǔn)方程,會(huì)求橢圓的標(biāo)準(zhǔn)方程,掌握橢圓簡(jiǎn)單的幾何性質(zhì); 2. 了解運(yùn)用曲線方程研究曲線幾何性質(zhì)的思想方法;能運(yùn)用橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)處理一些簡(jiǎn)單的實(shí)際問題. 【基礎(chǔ)練習(xí)】 1.已知△ABC的頂點(diǎn)B、C在橢圓上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是 2.橢圓的離心率為 3.已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為F(-2,0),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則該橢圓的標(biāo)準(zhǔn)方程是 4. 已知橢圓的離心率,則的值為 【范例導(dǎo)析】 例1.(1)求經(jīng)過點(diǎn),且與橢圓有共同焦點(diǎn)的橢圓方程。 (2)已知橢圓以坐標(biāo)軸為對(duì)稱軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程。 【分析】由所給條件求橢圓的標(biāo)準(zhǔn)方程的基本步驟是:①定位,即確定橢圓的焦點(diǎn)在哪軸上;②定量,即根據(jù)條件列出基本量a、b、c的方程組,解方程組求得a、b的值;③寫出方程. 解:(1)∵橢圓焦點(diǎn)在軸上,故設(shè)橢圓的標(biāo)準(zhǔn)方程為(), 由橢圓的定義知, , ∴,又∵,∴, 所以,橢圓的標(biāo)準(zhǔn)方程為。 (2)方法一:①若焦點(diǎn)在x軸上,設(shè)方程為, ∵點(diǎn)P(3,0)在該橢圓上∴即又,∴∴橢圓的方程為. ②若焦點(diǎn)在y軸上,設(shè)方程為, ∵點(diǎn)P(3,0)在該橢圓上∴即又,∴∴橢圓的方程為 方法二:設(shè)橢圓方程為.∵點(diǎn)P(3,0)在該橢圓上∴9A=1,即,又∴,∴橢圓的方程為或. 【點(diǎn)撥】求橢圓標(biāo)準(zhǔn)方程通常采用待定系數(shù)法,若焦點(diǎn)在x軸上,設(shè)方程為,若焦點(diǎn)在y軸上,設(shè)方程為,有時(shí)為了運(yùn)算方便,也可設(shè)為,其中 . 例2.點(diǎn)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,。 (1)求點(diǎn)P的坐標(biāo); (2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值。 【分析】①列方程組求得P坐標(biāo);②解幾中的最值問題通??赊D(zhuǎn)化為函數(shù)的最值來求解,要注意橢圓上點(diǎn)坐標(biāo)的范圍. 解:(1)由已知可得點(diǎn)A(-6,0),F(0,4) 設(shè)點(diǎn)P(,),則=(+6, ),=(-4, ),由已知可得 則2+9-18=0, =或=-6. 由于>0,只能=,于是=. ∴點(diǎn)P的坐標(biāo)是(,) (2) 直線AP的方程是-+6=0. 設(shè)點(diǎn)M(,0),則M到直線AP的距離是. 于是=,又-6≤≤6,解得=2. 橢圓上的點(diǎn)(,)到點(diǎn)M的距離有 , 由于-6≤≤6, ∴當(dāng)=時(shí),d取得最小值 點(diǎn)撥:本題考查了二次曲線上的動(dòng)點(diǎn)與定點(diǎn)的距離范圍問題,通常轉(zhuǎn)化為二次函數(shù)值域問題. 【反饋練習(xí)】 1.如果表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是(0,1) 2.設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、、F2,過F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則橢圓的離心率是 3.橢圓=1的焦點(diǎn)為F1和F2,點(diǎn)P在橢圓上.如果線段PF1的中點(diǎn)在y軸上,那么|PF1|是|PF2|的7倍 4.若橢圓的離心率,則的值為 5..橢圓的右焦點(diǎn)到直線的距離為 6.與橢圓具有相同的離心率且過點(diǎn)(2,-)的橢圓的標(biāo)準(zhǔn)方程是或 7.橢圓上的點(diǎn)到直線的最大距離是 8. 已知點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)到兩焦點(diǎn)的距離分別為和,過點(diǎn)作焦點(diǎn)所在軸的垂線,它恰好過橢圓的一個(gè)焦點(diǎn),求橢圓方程. 分析:討論橢圓方程的類型,根據(jù)題設(shè)求出和(或和)的值.從而求得橢圓方程. 解:設(shè)兩焦點(diǎn)為、,且,. 從橢圓定義知.即. 從知垂直焦點(diǎn)所在的對(duì)稱軸,所以在中,, 可求出,,從而. ∴所求橢圓方程為或. 第2課 橢圓B 【考點(diǎn)導(dǎo)讀】 1. 掌握橢圓的第二定義,能熟練運(yùn)用兩個(gè)定義解決橢圓的有關(guān)問題; 2. 能解決橢圓有關(guān)的綜合性問題. 【基礎(chǔ)練習(xí)】 1.曲線與曲線的(D) A 焦點(diǎn)相同 B 離心率相等 C準(zhǔn)線相同 D 焦距相等 2.如果橢圓上的點(diǎn)A到右焦點(diǎn)的距離等于4,那么點(diǎn)A 到兩條準(zhǔn)線的距離分別是 3 離心率,一條準(zhǔn)線為的橢圓的標(biāo)準(zhǔn)方程是 【范例導(dǎo)析】 例1.橢圓(a>b>0)的二個(gè)焦點(diǎn)F1(-c,0),F(xiàn)2(c,0),M是橢圓上一點(diǎn),且。 求離心率e的取值范圍. 分析:離心率與橢圓的基本量a、b、c有關(guān),所以本題可以用基本量表示橢圓上點(diǎn)的坐標(biāo),再借助橢圓橢圓上點(diǎn)坐標(biāo)的范圍建立關(guān)于基本量的不等式,從而確定離心率的范圍. 解:設(shè)點(diǎn)M的坐標(biāo)為(x,y),則,。由,得x2-c2+y2=0,即x2-c2=-y2。 ① 又由點(diǎn)M在橢圓上,得y2=b2,代入①,得x2-c2,即。 ∵0≤≤,∴0≤≤,即0≤≤1,0≤≤1,解得≤≤1。 又∵0<<1,∵≤≤1. 例2.如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列. (1)求該弦橢圓的方程; (2)求弦AC中點(diǎn)的橫坐標(biāo). 例2 分析:第一問直接可有第一定義得出基本量a,從而寫出方程;第二問涉及到焦半徑問題,可以考慮利用第二定義的得出焦半徑表達(dá)式,結(jié)合等差數(shù)列的定義解決. 解:(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3. 故橢圓方程為=1. (2)由點(diǎn)B(4,yB)在橢圓上,得|F2B|=|yB|=.因?yàn)闄E圓右準(zhǔn)線方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(-x1),|F2C|=(-x2), 由|F2A|、|F2B|、|F2C|成等差數(shù)列,得(-x1)+(-x2)=2,由此得出:x1+x2=8. 設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0==4. 【反饋練習(xí)】 1.在給定橢圓中,過焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為 2.已知F1、F2為橢圓的兩個(gè)焦點(diǎn),過F1作傾斜角為的弦AB,則△F2AB的面積為 3.已知正方形,則以為焦點(diǎn),且過兩點(diǎn)的橢圓的離心率為 4.橢圓上的點(diǎn)P到它的左準(zhǔn)線的距離是10,那么點(diǎn)P 到它的右焦點(diǎn)的距離是 12 5.橢圓上不同三點(diǎn),,與焦點(diǎn)的距離成等差數(shù)列. 求證:; 證明:由橢圓方程知,,. 由圓錐曲線的統(tǒng)一定義知:,∴ . 同理 . ∵ ,且, ∴ ,即 . 第3課 雙曲線 【考點(diǎn)導(dǎo)讀】 1. 了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,了解其幾何性質(zhì) 2. 能用雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)解決一些簡(jiǎn)單的實(shí)際問題. 【基礎(chǔ)練習(xí)】 1.雙曲線的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則 2. 方程表示雙曲線,則的范圍是 3.已知中心在原點(diǎn),焦點(diǎn)在y軸的雙曲線的漸近線方程為,則此雙曲線的離心率為 4. 已知焦點(diǎn),雙曲線上的一點(diǎn)到的距離差的絕對(duì)值等于,則雙曲線的標(biāo)準(zhǔn)方程為 【范例導(dǎo)析】 例1. (1) 已知雙曲線的焦點(diǎn)在軸上,并且雙曲線上兩點(diǎn)坐標(biāo)分別為,求雙曲線的標(biāo)準(zhǔn)方程; (2)求與雙曲線共漸近線且過點(diǎn)的雙曲線方程及離心率. 分析:由所給條件求雙曲線的標(biāo)準(zhǔn)方程的基本步驟是:①定位,即確定雙曲線的焦點(diǎn)在哪軸上;②定量,即根據(jù)條件列出基本量a、b、c的方程組,解方程組求得a、b的值;③寫出方程. 解:(1)因?yàn)殡p曲線的焦點(diǎn)在軸上,所以設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為①; ∵點(diǎn)在雙曲線上,∴點(diǎn)的坐標(biāo)適合方程①。 將分別代入方程①中,得方程組: 將和看著整體,解得, ∴即雙曲線的標(biāo)準(zhǔn)方程為。 點(diǎn)評(píng):本題只要解得即可得到雙曲線的方程,沒有必要求出的值;在求解的過程中也可以用換元思想,可能會(huì)看的更清楚。 (2)解法一:雙曲線的漸近線方程為: 當(dāng)焦點(diǎn)在x軸時(shí),設(shè)所求雙曲線方程為 ∵,∴ ① ∵在雙曲線上 ∴ ② 由①-②,得方程組無解 當(dāng)焦點(diǎn)在y軸時(shí),設(shè)雙曲線方程為 ∵,∴ ③ ∵在雙曲線上,∴ ④ 由③④得, ∴所求雙曲線方程為:且離心率 解法二:設(shè)與雙曲線共漸近線的雙曲線方程為: ∵點(diǎn)在雙曲線上,∴ ∴所求雙曲線方程為:,即. 點(diǎn)評(píng):一般地,在已知漸近線方程或與已知雙曲線有相同漸近線的條件下,利用雙曲線系方程求雙曲線方程較為方便.通常是根據(jù)題設(shè)中的另一條件確定參數(shù). 例2. 某中心接到其正東、正西、正北方向三個(gè)觀測(cè)點(diǎn)的報(bào)告:正西、正北兩個(gè)觀測(cè)點(diǎn)同時(shí)聽到了一聲巨響,正東觀測(cè)點(diǎn)聽到的時(shí)間比其他兩觀測(cè)點(diǎn)晚4s. 已知各觀測(cè)點(diǎn)到該中心的距離都是1020m. 試確定該巨響發(fā)生的位置.(假定當(dāng)時(shí)聲音傳播的速度為340m/ s :相關(guān)各點(diǎn)均在同一平面上) 解:如圖: 以接報(bào)中心為原點(diǎn)O,正東、正北方向?yàn)閤軸、y軸正向,建立直角坐標(biāo)系.設(shè)A、B、C分別是西、東、北觀測(cè)點(diǎn),則A(-1020,0),B(1020,0),C(0,1020) 設(shè)P(x,y)為巨響為生點(diǎn),由A、C同時(shí)聽到巨響聲,得|PA|=|PB|,故P在AC的垂直平分線PO上,PO的方程為y=-x,因B點(diǎn)比A點(diǎn)晚4s聽到爆炸聲,故|PB|- |PA|=3404=1360 由雙曲線定義知P點(diǎn)在以A、B為焦點(diǎn)的雙曲線上, 依題意得a=680, c=1020, y x o A B C P 用y=-x代入上式,得,∵|PB|>|PA|, 例2 答:巨響發(fā)生在接報(bào)中心的西偏北450距中心處. 例3.雙曲線的焦距為2c,直線過點(diǎn)(a,0)和(0,b),且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和求雙曲線的離心率e的取值范圍. 解:直線的方程為,即 由點(diǎn)到直線的距離公式,且,得到點(diǎn)(1,0)到直線的距離, 同理得到點(diǎn)(-1,0)到直線的距離 由 即 于是得 解不等式,得 由于所以的取值范圍是 點(diǎn)撥:本小題主要考查點(diǎn)到直線距離公式,雙曲線的基本性質(zhì)以及綜合運(yùn)算能力. 【反饋練習(xí)】 1.雙曲線的漸近線方程為 2.已知雙曲線的離心率為,焦點(diǎn)是,,則雙曲線方程為 3.已知雙曲線的兩個(gè)焦點(diǎn)為,,P是此雙曲線上的一點(diǎn),且,,則該雙曲線的方程是 4. 設(shè)P是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為,、分別是雙曲線左右焦點(diǎn),若=3,則=7 5.與橢圓共焦點(diǎn)且過點(diǎn)的雙曲線的方程 6. (1)求中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸經(jīng)過點(diǎn)且離心率為的雙曲線標(biāo)準(zhǔn)方程. (2)求以曲線和的交點(diǎn)與原點(diǎn)的連線為漸近線,且實(shí)軸長(zhǎng)為12的雙曲線的標(biāo)準(zhǔn)方程. 解:(1)設(shè)所求雙曲線方程為:,則, ∴,∴,∴所求雙曲線方程為 (2)∵,∴或,∴漸近線方程為 當(dāng)焦點(diǎn)在軸上時(shí),由且,得. ∴所求雙曲線方程為 當(dāng)焦點(diǎn)在軸上時(shí),由,且,得. ∴所求雙曲線方程為 7.設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率. 分析:由兩點(diǎn)式得直線的方程,再由雙曲線中、、的關(guān)系及原點(diǎn)到直線的距離建立等式,從而解出的值. 解:由過兩點(diǎn),,得的方程為. 由點(diǎn)到的距離為,得. 將代入,平方后整理,得. 令,則.解得或. 而,有.故或. 因,故, 所以應(yīng)舍去.故所求離心率. 說明:此題易得出錯(cuò)誤答案:或.其原因是未注意到題設(shè)條件,從而離心率.而,故應(yīng)舍去. 8.已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,離心率為,且過點(diǎn). (1)求雙曲線方程;(2)若點(diǎn)在雙曲線上,求證:; (3)對(duì)于(2)中的點(diǎn),求的面積. 解:(1)由題意,可設(shè)雙曲線方程為,又雙曲線過點(diǎn),解得 ∴ 雙曲線方程為; (2)由(1)可知,,, ∴ , ∴ ,, ∴ , 又點(diǎn)在雙曲線上, ∴ , ∴ , 即; (3) ∴的面積為6. 第4課 拋物線 【考點(diǎn)導(dǎo)讀】 1.了解拋物線的定義,掌握拋物線標(biāo)準(zhǔn)方程的四種形式和拋物線的簡(jiǎn)單幾何性質(zhì). 2.會(huì)用拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)解決簡(jiǎn)單的實(shí)際問題. 【基礎(chǔ)練習(xí)】 1.焦點(diǎn)在直線x-2y-4=0上的拋物線的標(biāo)準(zhǔn)方程是 2.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為 3.拋物線的焦點(diǎn)坐標(biāo)是__(a,0)_ 4.拋物線上與焦點(diǎn)的距離等于9的點(diǎn)的坐標(biāo)是 5.點(diǎn)是拋物線上一動(dòng)點(diǎn),則點(diǎn)到點(diǎn)的距離與到直線的距離和的最小值 【范例導(dǎo)析】 例1. 給定拋物線y2=2x,設(shè)A(a,0),a>0,P是拋物線上的一點(diǎn),且|PA|=d,試求d的最小值. 解:設(shè)P(x0,y0)(x0≥0),則y02=2x0, ∴d=|PA|= ==. ∵a>0,x0≥0, ∴(1)當(dāng)0<a<1時(shí),1-a>0, 此時(shí)有x0=0時(shí),dmin==a. (2)當(dāng)a≥1時(shí),1-a≤0, 此時(shí)有x0=a-1時(shí),dmin=. 例2.如圖所示,直線和相交于點(diǎn)M,⊥,點(diǎn),以A、B為端點(diǎn)的曲線段C上的任一點(diǎn)到的距離與到點(diǎn)N的距離相等,若△AMN為銳角三角形,,,且,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程. 分析:因?yàn)榍€段C上的任一點(diǎn)是以點(diǎn)N為焦點(diǎn),以為準(zhǔn)線的拋物線的一段,所以本題關(guān)鍵是建立適當(dāng)坐標(biāo)系,確定C所滿足的拋物線方程. 例2 解:以為x軸,MN的中點(diǎn)為坐標(biāo)原點(diǎn)O,建立直角坐標(biāo)系. 由題意,曲線段C是N為焦點(diǎn),以為準(zhǔn)線的拋物線的一段,其中A、B分別為曲線段的兩端點(diǎn). ∴設(shè)曲線段C滿足的拋物線方程為:其中、為A、B的橫坐標(biāo) 令則, ∴由兩點(diǎn)間的距離公式,得方程組: 解得或 ∵△AMN為銳角三角形,∴,則, 又B在曲線段C上, 則曲線段C的方程為 【反饋練習(xí)】 1.拋物線的準(zhǔn)線方程是 2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是 3.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A為拋物線上的一點(diǎn),若,則點(diǎn)A的坐標(biāo)為 4.拋物線上的點(diǎn)到直線距離的最小值是 5.若直線l過拋物線(a>0)的焦點(diǎn),并且與y軸垂直,若l被拋物線截得的線段長(zhǎng)為4,則a= 6.某拋物線形拱橋跨度是20米,拱高4米,在建橋時(shí)每隔4米需用一支柱支撐,求其中最長(zhǎng)的支柱的長(zhǎng). 解:以拱頂為原點(diǎn),水平線為x軸,建立坐標(biāo)系, 如圖,由題意知,|AB|=20,|OM|=4,A、B坐標(biāo)分別為(-10,-4)、(10,-4) 設(shè)拋物線方程為x2=-2py,將A點(diǎn)坐標(biāo)代入,得100=-2p(-4),解得p=12.5, 于是拋物線方程為x2=-25y. 第6題 由題意知E點(diǎn)坐標(biāo)為(2,-4),E′點(diǎn)橫坐標(biāo)也為2,將2代入得y=-0.16,從而|EE′|= (-0.16)-(-4)=3.84.故最長(zhǎng)支柱長(zhǎng)應(yīng)為3.84米. 7.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸的正半軸,且過點(diǎn)P(2,2),過F的直線交拋物線于A,B兩點(diǎn).(1)求拋物線的方程; (2)設(shè)直線l是拋物線的準(zhǔn)線,求證:以AB為直徑的圓與直線l相切. 分析:可設(shè)拋物線方程為.用待定系數(shù)法求得方程,對(duì)于第二問的證明只須證明,則以AB為直徑的圓,必與拋物線準(zhǔn)線相切. 解:(1)設(shè)拋物線的方程,將(2,2)代入得∴所求拋物線方程為 (2)證明:作于于.M為AB中點(diǎn),作于,則由拋物線的定義可知: 在直角梯形中: ,故以AB為直徑的圓,必與拋物線的準(zhǔn)線相切. 點(diǎn)撥:類似有:以橢圓焦點(diǎn)弦為直徑的圓與相對(duì)應(yīng)的準(zhǔn)線相離,以雙曲線焦點(diǎn)弦為直徑的圓與相應(yīng)的準(zhǔn)線相交. 第5課 圓錐曲線的統(tǒng)一定義 【考點(diǎn)導(dǎo)讀】 1. 了解圓錐曲線的第二定義. 2. 能用第二定義解決簡(jiǎn)單的圓錐曲線問題. 【基礎(chǔ)練習(xí)】 1.拋物線的焦點(diǎn)的坐標(biāo)是, 準(zhǔn)線方程是 2..如果雙曲線的兩個(gè)焦點(diǎn)分別為、,一條漸近線方程為,那么它的兩條準(zhǔn)線間的距離是2 3.若雙曲線上的點(diǎn)到左準(zhǔn)線的距離是到左焦點(diǎn)距離的,則= 4.點(diǎn)M與點(diǎn)F的距離比它到直線:的距離小1,則點(diǎn)的軌跡方程是 【范例導(dǎo)析】 例1.已知雙曲線的漸近線方程為,兩條準(zhǔn)線間的距離為,求雙曲線標(biāo)準(zhǔn)方程. 分析:(可根據(jù)雙曲線方程與漸近線方程的關(guān)系,設(shè)出雙曲線方程,進(jìn)而求出雙曲線標(biāo)準(zhǔn)方程. 解:∵雙曲線漸近線方程為,∴設(shè)雙曲線方程為 ①若,則, ∴準(zhǔn)線方程為:,∴,∴ ②若,則, ∴準(zhǔn)線方程為:,∴,∴ ∴所求雙曲線方程為:或 點(diǎn)撥:求圓錐曲線方程時(shí),一般先由條件設(shè)出所求方程,然后再根據(jù)條件列出基本的方程組解方程組得出結(jié)果. 例2.已知點(diǎn),,在雙曲線上求一點(diǎn),使的值最?。? 解:∵,,∴,∴ 設(shè)點(diǎn)到與焦點(diǎn)相應(yīng)準(zhǔn)線的距離為則 ∴,∴ 至此,將問題轉(zhuǎn)化成在雙曲線上求一點(diǎn), 使到定點(diǎn)的距離與到準(zhǔn)線距離和最?。? 即到定點(diǎn)的距離與準(zhǔn)線距離和最小為直線垂直于準(zhǔn)線時(shí), 解之得,點(diǎn). 點(diǎn)撥:靈活巧妙地運(yùn)用雙曲線的比值定義于解題中,將會(huì)帶給我們意想不到的方便和簡(jiǎn)單.教學(xué)中應(yīng)著重培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)的能力. 【反饋練習(xí)】 1.若雙曲線上的點(diǎn)到左準(zhǔn)線的距離是到左焦點(diǎn)距離的,則 2.在給定橢圓中,過焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為 3.已知雙曲線的一條準(zhǔn)線為,則該雙曲線的離心率為 4 雙曲線右支點(diǎn)上的一點(diǎn)P到右焦點(diǎn)的距離為2,則P點(diǎn)到左準(zhǔn)線的距離為 8 第6課 圓錐曲線綜合 【考點(diǎn)導(dǎo)讀】 1. 在理解和掌握?qǐng)A錐曲線的定義和簡(jiǎn)單幾何性質(zhì)的基礎(chǔ)上,把握有關(guān)圓錐曲線的知識(shí)內(nèi)在聯(lián)系,靈活地運(yùn)用解析幾何的常用方法解決問題. 2. 通過問題的解決,理解函數(shù)與方程、等價(jià)轉(zhuǎn)化、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想. 3. 能夠抓住實(shí)際問題的本質(zhì)建立圓錐曲線的數(shù)學(xué)模型,實(shí)現(xiàn)實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化,并運(yùn)用圓錐曲線知識(shí)解決實(shí)際問題. 【基礎(chǔ)練習(xí)】 1. 給出下列四個(gè)結(jié)論: ①當(dāng)a為任意實(shí)數(shù)時(shí),直線恒過定點(diǎn)P,則過點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是; ②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為,則雙曲線的標(biāo)準(zhǔn)方程是; ③拋物線; ④已知雙曲線,其離心率,則m的取值范圍是(-12,0)。 其中所有正確結(jié)論的個(gè)數(shù)是4 2.設(shè)雙曲線以橢圓長(zhǎng)軸的兩個(gè)端點(diǎn)為焦點(diǎn),其準(zhǔn)線過橢圓的焦點(diǎn),則雙曲線的漸近線的斜率為 3.如果橢圓的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是 【范例導(dǎo)析】 例1. 已知拋物線的焦點(diǎn)為F,A、B是熱線上的兩動(dòng)點(diǎn),且過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M。 (I)證明為定值; (II)設(shè)的面積為S,寫出的表達(dá)式,并求S的最小值。 解:(1)F點(diǎn)的坐標(biāo)為(0,1)設(shè)A點(diǎn)的坐標(biāo)為 B點(diǎn)的坐標(biāo)為 由可得 因此 過A點(diǎn)的切線方程為 (1) 過B點(diǎn)的切線方程為 (2) 解(1)( 2)構(gòu)成的方程組可得點(diǎn)M的坐標(biāo),從而得到=0 即為定值 (2)=0可得三角形面積 所以 當(dāng)且僅當(dāng)時(shí)取等號(hào) 點(diǎn)撥:本題主要考察共線向量的關(guān)系,曲線的切線方程,直線的交點(diǎn)以及向量的數(shù)量積等知識(shí)點(diǎn) 涉及均值不等式,計(jì)算較復(fù)雜.難度很大 【反饋練習(xí)】 1.已知雙曲線的中心在原點(diǎn),離心率為.若它的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則該雙曲線與拋物線的交點(diǎn)到原點(diǎn)的距離是 2.設(shè)分別是雙曲線的左、右焦點(diǎn).若點(diǎn)在雙曲線上,且,則 3.設(shè)P是橢圓上一點(diǎn),、 是橢圓的兩個(gè)焦點(diǎn),則的最小值是 4.已知以F1(2,0),F(xiàn)2(2,0)為焦點(diǎn)的橢圓與直線有且僅有一個(gè)交點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為 5. 雙曲線C與橢圓的焦點(diǎn)相同,離心率互為倒數(shù),則雙曲線C的漸近線的方程是 6.已知橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,則點(diǎn)到橢圓右焦點(diǎn)的距離等于__2 _ 7.如圖,點(diǎn)A是橢圓C:的短軸位于x軸下方的端點(diǎn),過A作斜率為1的直線交橢圓于B點(diǎn),點(diǎn)P在y軸上,且BP∥x軸,=9,若點(diǎn)P的坐標(biāo)為(0,1),求橢圓C的方程. 8.在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切于坐標(biāo)原點(diǎn).橢圓與圓的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.求圓的方程. 解:設(shè)圓心坐標(biāo)為(m,n)(m<0,n>0),則該圓的方程為(x-m)2+(y-n)2=8已知該圓與直線y=x相切,那么圓心到該直線的距離等于圓的半徑,則 =2 即=4 ① 又圓與直線切于原點(diǎn),將點(diǎn)(0,0)代入得 m2+n2=8 ② 聯(lián)立方程①和②組成方程組解得 故圓的方程為(x+2)2+(y-2)2=8 9.已知?jiǎng)訄A過定點(diǎn),且與直線相切,其中,求動(dòng)圓圓心的軌跡的方程. 解:如圖,設(shè)為動(dòng)圓圓心,為記為,過點(diǎn)作直線的垂線,垂足為,由題意知:即動(dòng)點(diǎn)到定點(diǎn)與定直線的距離相等 由拋物線的定義知,點(diǎn)的軌跡為拋物線,其中為焦點(diǎn),為準(zhǔn)線 所以軌跡方程為; 第9題- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué)復(fù)習(xí)講義 第九章 圓錐曲線 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 講義 第九
鏈接地址:http://m.kudomayuko.com/p-2632335.html