儀表殼自動(dòng)化壓裝機(jī)的設(shè)計(jì)
儀表殼自動(dòng)化壓裝機(jī)的設(shè)計(jì),儀表,自動(dòng)化,裝機(jī),設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)進(jìn)展情況記錄
(2010/2010學(xué)年 第 2學(xué)期)
二級(jí)學(xué)院(直屬學(xué)部) 機(jī)電工程學(xué)院
專業(yè)名稱 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班 級(jí) 06機(jī)單
課題名稱 儀表殼自動(dòng)化壓裝機(jī)的設(shè)計(jì)
學(xué)生姓名 陳天平
指導(dǎo)教師 劉天軍
填 寫 說(shuō) 明
1. 學(xué)生在正式接受畢業(yè)設(shè)計(jì)(論文)任務(wù)書后填寫本表格。
2. 本表格由學(xué)生按照畢業(yè)設(shè)計(jì)進(jìn)行的周次填寫,每周填寫一張,并交指導(dǎo)教師簽署意見(jiàn)。
3. 在畢業(yè)設(shè)計(jì)(論文)工作的中期,學(xué)生應(yīng)填寫“畢業(yè)設(shè)計(jì)(論文)工作中期小結(jié)”,指導(dǎo)教師簽署意見(jiàn)。
4. 本表格由學(xué)生保存,在畢業(yè)設(shè)計(jì)(論文)結(jié)束后和其他設(shè)計(jì)(論文)資料一起上交。
5. 建議學(xué)生每周使用電子文檔提交本表格,以方便遠(yuǎn)程聯(lián)系和保存。
第三周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
我的畢業(yè)設(shè)計(jì)課題儀表殼自動(dòng)化壓裝機(jī)的設(shè)計(jì),它來(lái)源于常州紅梅電力設(shè)備廠。本周主要完成了:
1.到圖書館借閱相關(guān)書籍;
2.到網(wǎng)上下載課題的相關(guān)資料;
3.明確該課題的現(xiàn)狀;
4.研讀相關(guān)資料,首先樹(shù)立起對(duì)該課題的整體觀念;
二、存在的主要問(wèn)題
借閱的資料中,與自己課題相關(guān)的內(nèi)容還太少,獲取的信息還不完整,對(duì)自己的課題還只是膚淺的認(rèn)識(shí)。
三、下一步的打算
在多借閱一些相關(guān)的資料,并上網(wǎng)查找一些相關(guān)內(nèi)容來(lái)擴(kuò)大自己的信息量,或者走訪一些工廠觀察,做好前期準(zhǔn)備。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周根據(jù)下達(dá)的畢業(yè)設(shè)計(jì)課題進(jìn)行消化理解,資料的收集。重點(diǎn)了解機(jī)床的結(jié)構(gòu)形式、工藝范圍、機(jī)床布局等。
指導(dǎo)教師簽名: 劉天軍 2010年3月19日
第四周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、工作進(jìn)展
從網(wǎng)上查閱國(guó)內(nèi)有關(guān)壓裝機(jī)的資料,了解其結(jié)構(gòu)、加工原理、方法。翻閱《機(jī)構(gòu)構(gòu)型與應(yīng)用》中結(jié)構(gòu)設(shè)計(jì)的步驟和設(shè)計(jì)過(guò)程中應(yīng)注意的問(wèn)題,初步確定總體的結(jié)構(gòu)布置。并完成自己的開(kāi)題報(bào)告。
二、存在的主要問(wèn)題
在選擇壓裝機(jī)結(jié)構(gòu)設(shè)計(jì)步驟時(shí)存在方案不明確,結(jié)構(gòu)布置不合理等問(wèn)題。
三、下一步的打算
查閱更多的資料做出較為合理的選擇,確定設(shè)計(jì)的方案與路線,準(zhǔn)備繪制裝配圖的草圖。
學(xué)生簽名: 陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周已針對(duì)上周任務(wù)了解壓裝機(jī)的布局。完成了開(kāi)題報(bào)告。
指導(dǎo)教師簽名: 劉天軍 2010年3月26日
第五周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、工作進(jìn)展
在經(jīng)過(guò)自己仔細(xì)考慮之后,選擇出自己認(rèn)為較為合理的設(shè)計(jì)方案與結(jié)構(gòu)布置,并且在前面的基礎(chǔ)上完善裝配圖的草圖。翻閱《機(jī)構(gòu)構(gòu)型與應(yīng)用》中關(guān)于壓裝機(jī)總體方案確定的步驟和方法。
二、存在的主要問(wèn)題
在翻閱《機(jī)構(gòu)構(gòu)型與應(yīng)用》中關(guān)于壓裝機(jī)機(jī)構(gòu)的設(shè)計(jì)參數(shù),有些參數(shù)、符號(hào)的代表意思還不太清楚。
三、下一步的打算
仔細(xì)翻閱《機(jī)構(gòu)構(gòu)型與應(yīng)用》和手頭所借閱的相關(guān)書籍、工具手冊(cè)等,確定焊接變位機(jī)結(jié)構(gòu)設(shè)計(jì)的總體方案。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周進(jìn)行從動(dòng)件運(yùn)動(dòng)線圖繪制。初步繪制部分草圖,下周進(jìn)行確定壓裝機(jī)軸的根數(shù)。
指導(dǎo)教師簽名: 劉天軍 2010年4月2日
第六周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、工作進(jìn)度
再仔細(xì)翻閱《機(jī)構(gòu)構(gòu)型與應(yīng)用》,根據(jù)老師的指導(dǎo)進(jìn)入凸輪的繪制。了解其功用、工作原理、相互連接方法、相對(duì)位置等。
二、存在的主要問(wèn)題
在繪制裝配圖時(shí),有些標(biāo)準(zhǔn)件的畫法不會(huì)。有的零件的功用、工作原理、連接方法、配合性質(zhì)也不清楚。
三、下一步的打算
查閱繪圖手冊(cè)弄懂自己不會(huì)畫的標(biāo)準(zhǔn)件的畫法,并完善自己的裝配圖。搞清楚各零件的功用、工作原理、配合性質(zhì)。
學(xué)生簽名: 陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周已完成凸輪的設(shè)計(jì)。下周進(jìn)行各傳動(dòng)軸空間位置布局。
指導(dǎo)教師簽名:劉天軍 2010年4月9日
第七周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、工作進(jìn)展
初步完成壓裝機(jī)總體裝配圖的繪制,明白各零件的工作原理,配合性質(zhì)。完善凸輪的運(yùn)動(dòng)。根據(jù)上面的計(jì)算算出各軸的理論軸徑,初步選取支持軸的軸承。
二、存在的主要問(wèn)題
在繪制布局圖時(shí)不知道如何安排各軸的位置,及距離箱體的尺寸。
三、下一步的打算
綜合考慮上面的問(wèn)題,查看圖冊(cè),向指導(dǎo)老師請(qǐng)教確定輪系圖各軸的位置及整體布置。
學(xué)生簽名: 陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
各傳動(dòng)軸空間位置布局。但由于方案一些問(wèn)題,重新繪制轉(zhuǎn)速圖,下周完善裝配圖。
指導(dǎo)教師簽名: 劉天軍 2010年4月16日
第八周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、工作進(jìn)展
在確定零件的參數(shù)下,通過(guò)翻閱《機(jī)構(gòu)構(gòu)型與應(yīng)用》中結(jié)構(gòu)的圖紙,參照例圖裝配各零件并標(biāo)注有關(guān)尺寸及技術(shù)要求,完善焊壓裝機(jī)機(jī)構(gòu)設(shè)計(jì)的總圖和工作臺(tái)回轉(zhuǎn)機(jī)構(gòu)總圖。
二、存在的主要問(wèn)題
在繪圖時(shí),出現(xiàn)了一些繪圖方面的錯(cuò)誤。
三、下一步的打算
將草圖中出現(xiàn)的問(wèn)題一一改進(jìn),重新繪制一張草圖并進(jìn)一步修改。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周基本完成壓裝機(jī)箱裝配圖草圖設(shè)計(jì),但還存在許多問(wèn)題,下周完成變主視圖。
指導(dǎo)教師簽名: 劉天軍 2010年4月23日
第九周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
正式繪制壓裝機(jī)機(jī)構(gòu)總圖,在正式繪制前,將上次繪圖時(shí)出現(xiàn)的一些繪圖方面的錯(cuò)誤改進(jìn),通過(guò)查手冊(cè)采用標(biāo)準(zhǔn)畫法,相鄰零件剖面線打?qū)?。完成變速箱總圖繪制包括展開(kāi)圖、外形圖、局部剖視圖、尺寸標(biāo)注、件號(hào)標(biāo)注等。
二、存在的主要問(wèn)題
結(jié)構(gòu)雖經(jīng)過(guò)考慮,但的布置還不是很合理。也沒(méi)考慮與主軸箱的連接部分的合理布局。
三、下一步的打算
再重新布局機(jī)構(gòu),達(dá)到合理的要求。對(duì)連接部分從新設(shè)計(jì),完善圖紙。并查找、翻譯英文資料。
學(xué)生簽名:陳劉高
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周對(duì)上周的設(shè)計(jì)中的問(wèn)題進(jìn)行了修改,并標(biāo)注了一些尺寸,下周完成總圖繪制包括展開(kāi)圖、外形圖、局部剖視圖、尺寸標(biāo)注、件號(hào)標(biāo)注等。
指導(dǎo)教師簽名:劉天軍 2010年4月30日
畢業(yè)設(shè)計(jì)(論文)工作中期小結(jié)
學(xué)生畢業(yè)設(shè)計(jì)(論文)工作中期小結(jié)
轉(zhuǎn)眼畢業(yè)設(shè)計(jì)已經(jīng)過(guò)了九個(gè)星期,下面是我這九個(gè)星期畢業(yè)設(shè)計(jì)的小結(jié)。
我的課題是《儀表殼自動(dòng)化壓裝機(jī)的設(shè)計(jì)》,畢業(yè)設(shè)計(jì)已進(jìn)行了兩個(gè)多月,我也按照老師布置的任務(wù),達(dá)到了預(yù)期的進(jìn)程和要求。開(kāi)始的時(shí)候還是很茫然,無(wú)從下手。我積極向老師詢問(wèn),并且在網(wǎng)上看了很多壓裝機(jī)械,對(duì)壓裝機(jī)有了感性的認(rèn)識(shí)。隨后,我借閱了相關(guān)資料,通過(guò)閱讀心里有了理性的認(rèn)識(shí)。在完成方案論證并確定總體方案后,我開(kāi)始著手設(shè)計(jì),開(kāi)題報(bào)告使我對(duì)本課題有了更深的了解。計(jì)算中遇到的問(wèn)題最大也最多,不過(guò)在老師的幫助下,還是得到了解決。英文翻譯也是耗費(fèi)了很多時(shí)間,不過(guò)對(duì)英語(yǔ)水平的提高大有幫助。圖紙的繪制還算順利,不過(guò)從中發(fā)現(xiàn)了不少問(wèn)題,但同時(shí)也學(xué)習(xí)到新的知識(shí)。
兩個(gè)月畢業(yè)設(shè)計(jì)經(jīng)歷了從被動(dòng)到主動(dòng)的過(guò)程,從中學(xué)到了很多,比如遇到問(wèn)題不要慌張,要冷靜面對(duì),通過(guò)分析和思考加以解決,同時(shí)團(tuán)隊(duì)合作也很重要。
以后的時(shí)間短了,我要抓住每分每秒,完成我的畢業(yè)設(shè)計(jì)。
學(xué)生簽名:陳天平
指導(dǎo)教師對(duì)學(xué)生到目前為止畢業(yè)設(shè)計(jì)(論文)工作的評(píng)價(jià)和意見(jiàn)
該同學(xué)自接到課題后能按照指導(dǎo)老師要求完成每一階段設(shè)計(jì)任務(wù),在設(shè)計(jì)過(guò)程中能及時(shí)發(fā)現(xiàn)問(wèn)題解決問(wèn)題,望在后一階段設(shè)計(jì)中加強(qiáng)專業(yè)知識(shí)的學(xué)習(xí),加強(qiáng)設(shè)計(jì)說(shuō)明能力,認(rèn)真集中精力投入畢業(yè)設(shè)計(jì)中去。
指導(dǎo)教師簽名: 劉天軍 2010年4月30日
第十周 進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
本周已經(jīng)將變速箱零件圖繪制完成。同時(shí),設(shè)計(jì)說(shuō)明書也開(kāi)始大致的編寫,還有大量的內(nèi)容需要補(bǔ)充。
二、存在的主要問(wèn)題
繪制零件圖雖然相對(duì)于其他圖來(lái)說(shuō)要簡(jiǎn)單許多,但是在標(biāo)注上卻遇到了問(wèn)題。比如,形位公差的標(biāo)注,零件的那些部位需要標(biāo)粗糙度,粗糙度值應(yīng)為多少,尺寸的偏差如何確定等等。
三、下一步的打算
翻閱《機(jī)械設(shè)計(jì)手冊(cè)》中關(guān)于互換性的內(nèi)容,仔細(xì)了解形位公差的標(biāo)注和值的確定,粗糙度的確定,技術(shù)要求的方式,從而將零件圖繪制完成。
學(xué)生簽名: 陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周基本完成了壓裝機(jī)結(jié)構(gòu)設(shè)計(jì)找出存在問(wèn)題,并對(duì)結(jié)構(gòu)圖進(jìn)行修改和完善,下周完成變速箱總圖繪制草圖。
指導(dǎo)教師簽名: 劉天軍 2010年5月7日
第十一周進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
本周畫出了減速箱及完成部分的零件圖。工作圖的繪制相對(duì)緩慢,需要注意的問(wèn)題很多,比如:要估算圖幅,布好視圖以及結(jié)構(gòu)的設(shè)計(jì)等等。
二、存在的主要問(wèn)題。
整體的機(jī)構(gòu)還需完善。
三、下一步的打算
完善圖紙及對(duì)聯(lián)軸器的選擇。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周完成了減速箱的設(shè)計(jì),并對(duì)部分零件圖著手。繼續(xù)繪制主功能部件和各級(jí)分部件的細(xì)部結(jié)構(gòu)圖,標(biāo)出配套件、標(biāo)準(zhǔn)件和非標(biāo)準(zhǔn)件等。
注意驗(yàn)算,繪圖過(guò)程中的細(xì)節(jié)問(wèn)題要把握好。
指導(dǎo)教師簽名: 劉天軍 2010年 5 月14 日
第十二周進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
本周已經(jīng)完成減速箱的設(shè)計(jì)和聯(lián)軸器的選擇。繼續(xù)圖紙的繪制,雖然很多工作已基本完成,但我沒(méi)有放慢進(jìn)度,還是抓緊時(shí)間進(jìn)行,同時(shí)對(duì)計(jì)算部分又進(jìn)行了驗(yàn)算和核對(duì),很多問(wèn)題也和同學(xué),老師進(jìn)行了討論。
二、存在的主要問(wèn)題。
對(duì)減速箱的設(shè)計(jì)還需完善,減速箱的選則還需進(jìn)一步完善。
三、下一步的打算
完成所有的圖紙和減速箱的選擇。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
本周開(kāi)始完成所有的圖紙和聯(lián)軸器的選擇。評(píng)價(jià)部件結(jié)構(gòu),全面評(píng)價(jià)整體功能、局部功能、基本功能、附屬功能、技術(shù)經(jīng)濟(jì)指標(biāo)等,最終敲定總體結(jié)構(gòu)。
指導(dǎo)教師簽名: 劉天軍 2010 年 5月 21 日
第十三周進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
本周開(kāi)始對(duì)壓裝機(jī)部分的說(shuō)明,根據(jù)傳動(dòng),選型號(hào),選材料,等說(shuō)明。
二、存在的主要問(wèn)題
對(duì)凸輪設(shè)計(jì)出現(xiàn)了問(wèn)題,需要從CAD中復(fù)制在word上很不方便和熟練。
三、下一步的打算
繼續(xù)完成說(shuō)明書壓裝機(jī)的設(shè)計(jì)等。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
說(shuō)明書的格式上有點(diǎn)問(wèn)題,不過(guò)已改正過(guò)來(lái),接下來(lái)總結(jié)完成說(shuō)明書中的減速箱的設(shè)計(jì)。
指導(dǎo)教師簽名:劉天軍 2010年 5月28日
第十四周進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
一、 工作進(jìn)度
本周開(kāi)始對(duì)減速箱部分的說(shuō)明,根據(jù)傳動(dòng),選型號(hào),選材料,等說(shuō)明。
三、下一步的打算
繼續(xù)完成說(shuō)明書減速箱的設(shè)計(jì)等。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
完成減速箱的設(shè)計(jì)并檢查所有的材料。
指導(dǎo)教師簽名:劉天軍 2010年 6月4日
第十五周進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
檢查所有材料并核對(duì),準(zhǔn)備答辯。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
完成了所有的設(shè)計(jì)。
指導(dǎo)教師簽名:劉天軍 2010年 6月4日
第十六周進(jìn)展情況記錄
本周畢業(yè)設(shè)計(jì)(論文)工作進(jìn)展、存在的主要問(wèn)題及下一步打算
答辯。
學(xué)生簽名:陳天平
指導(dǎo)教師意見(jiàn)與下周進(jìn)度要求
開(kāi)始答辯。
指導(dǎo)教師簽名:劉天軍 2010年 6月4日
英文翻譯
【附】英文原文
翻譯文獻(xiàn):Five-axis milling machine tool kinematic chain design and analysis
作者:E.L.J. Bohez
文獻(xiàn)出處:International Journal of Machine Tools & Manufacture 42 (2002) 505–520
翻譯頁(yè)數(shù):
Five-axis milling machine tool kinematic chain design and analysis
1. Introduction
The main design specifications of a machine tool can be deduced from the following principles:
● The kinematics should provide sufficient flexibility in
orientation and position of tool and part.
● Orientation and positioning with the highest possible
speed.
● Orientation and positioning with the highest possible
accuracy.
● Fast change of tool and workpiece.
● Save for the environment.
● Highest possible material removal rate.
The number of axes of a machine tool normally refers to the number of degrees of freedom or the number of independent controllable motions on the machine slides.The ISO axes nomenclature recommends the use of a right-handed coordinate system, with the tool axis corresponding to the Z-axis. A three-axis milling machine has three linear slides X, Y and Z which can be positioned everywhere within the travel limit of each slide. The tool axis direction stays fixed during machining. This limits the flexibility of the tool orientation relative to the workpiece and results in a number of different set ups. To increase the flexibility in possible tool workpiece orientations, without need of re-setup, more degrees of freedom must be added. For a conventional three linear axes machine this can be achieved by providing rotational slides. Fig. 1 gives an example of a five-axis milling machine.
2. Kinematic chain diagram
To analyze the machine it is very useful to make a kinematic diagram of the machine. From this kinematic (chain) diagram two groups of axes can immediately be distinguished: the workpiece carrying axes and the tool carrying axes. Fig. 2 gives the kinematic diagram of the five-axis machine in Fig. 1. As can be seen the workpiece is carried by four axes and the tool only by one axis.The five-axis machine is similar to two cooperating robots, one robot carrying the workpiece and one robot carrying the tool.Five degrees of freedom are the minimum required to obtain maximum flexibility in tool workpiece orientation,this means that the tool and workpiece can be oriented relative to each other under any angle. The minimum required number of axes can also be understood from a rigid body kinematics point of view. To orient two rigid bodies in space relative to each other 6 degrees of freedom are needed for each body (tool and workpiece) or 12 degrees. However any common translation and rotation which does not change the relative orientation is permitted reducing the number of degrees by 6. The distance between the bodies is prescribed by the toolpath and allows elimination of an additional degree of freedom, resulting in a minimum requirement of 5 degrees.
3.Literature review
One of the earliest (1970) and still very useful introductions to five-axis milling was given by Baughman [1] clearly stating the applications. The APT language was then the only tool to program five-axis contouring applications. The problems in postprocessing were also clearly stated by Sim [2] in those earlier days of numerical control and most issues are still valid. Boyd in Ref. [3] was also one of the early introductions. Beziers’ book [4] is also still a very useful introduction. Held [5] gives a very brief but enlightening definition of multi-axis machining in his book on pocket milling. A recent paper applicable to the problem of five-axis machine workspace computation is the multiple sweeping using the Denawit-Hartenberg representation method developed by Abdel-Malek and Othman [6]. Many types and design concepts of machine tools which can be applied to five-axis machines are discussed in Ref. [7] but not specifically for the five-axis machine. he number of setups and the optimal orientation of the part on the machine table is discussed in Ref. [8]. A review about the state of the art and new requirements for tool path generation is given by B.K. Choi et al. [9]. Graphic simulation of the interaction of the tool and workpiece is also a very active area of research and a good introduction can be found in Ref. [10].
4. Classification of five-axis machines’ kinematic structure
Starting from Rotary (R) and Translatory (T) axes four main groups can be distinguished: (i) three T axes and two R axes; (ii) two T axes and three R axes; (iii) one T axis and four R axes and (iv) five R axes. Nearly all existing five-axis machine tools are in group (i). Also a number of welding robots, filament winding machines and laser machining centers fall in this group. Only limited instances of five-axis machine tools in group (ii) exist for the machining of ship propellers. Groups (iii) and (iv) are used in the design of robots usually with more degrees of freedom added. The five axes can be distributed between the workpiece or tool in several combinations. A first classification can be made based on the number of workpiece and tool carrying axes and the sequence of each axis in the kinematic chain. Another classification can be based on where the rotary axes are located, on the workpiece side or tool side. The five degrees of freedom in a Cartesian coordinates based machine are: three translatory movements X,Y,Z (in general represented as TTT) and two rotational movements AB, AC or BC (in general represented as RR).Combinations of three rotary axes (RRR) and two linear axes (TT) are rare. If an axis is bearing the workpiece it is the habit of noting it with an additional accent. The five-axis machine in Fig. 1 can be characterized by XYABZ. The XYAB axes carry the workpiece and the Z-axis carries the tool. Fig. 3 shows a machine of the type XYZAB, the three linear axes
carry the tool and the two rotary axes carry the workpiece.
5. Workspace of a five-axis machine
Before defining the workspace of the five-axis machine tool, it is appropriate to define the workspace of the tool and the workspace of the workpiece. The workspace of the tool is the space obtained by sweeping the tool reference point (e.g. tool tip) along the path of the tool carrying axes. The workspace of the workpiece carrying axes is defined in the same way (the center of the machine table can be chosen as reference point).These workspaces can be determined by computing the swept volume [6].Based on the above-definitions some quantitative parameters can be defined which are useful for comparison, selection and design of different types of machines.
6.Selection criteria of a five-axis machine
It is not the objective to make a complete study on how to select or design a five-axis machine for a certain application. Only the main criteria which can be used to justify the selection of a five-axis machine are discussed.
6.1. Applications of five-axis machine tools
The applications can be classified in positioning and contouring. Figs. 12 and 13 explain the difference between five-axis positioning and five-axis contouring.
6.1.1. Five-axis positioning
Fig. 12 shows a part with a lot of holes and flat planes under different angles, to make this part with a three axis milling machine it is not possible to process the part in one set up. If a five-axis machine is used the tool can process. More details on countouring can be found in Ref. [13]. Applications of five-axis contouring are: (i) production of blades, such as compressor and turbine blades; (ii) injectors of fuel pumps; (iii) profiles of tires; (iv) medical prosthesis such as artificial heart valves; (v) molds made of complex surfaces.
6.1.2. Five-axis contouring
Fig. 13 shows an example of five-axis contouring, tomachine the complex shape of the surface we need to control the orientation of the tool relative to the part during cutting. The tool workpiece orientation changes in each step. The CNC controller needs to control all the five-axes simultaneously during the material removal process. More details on countouring can be found in Ref. [13]. Applications of five-axis contouring are: (i) production of blades, such as compressor and turbine blades; (ii) injectors of fuel pumps; (iii) profiles of tires; (iv) medical prosthesis such as artificial heart valves; (v)
molds made of complex surfaces.
6.2. Axes configuration selection
The size and weight of the part is very important as a first criterion to design or select a configuration. Very heavy workpieces require short workpiece kinematic chains. Also there is a preference for horizontal machine tables which makes it more convenient to fix and handle the workpiece. Putting a heavy workpiece on a single rotary axis kinematic chain will increase the orientation flexibility very much. It can be observed from Fig. 4that providing a single horizontal rotary axis to carry the workpiece will make the machine more flexible. In most cases the tool carrying kinematic chains will be kept as short as possible because the toolspindle drive must also be carried.
6.3.five-axes machining of jewelry
A typical workpiece could be a flower shaped part as in Fig. 14. This application is clearly contouring. The part will be relatively small compared to the tool assembly. Also small diameter tools will require a high speed spindle. A horizontal rotary table would be a very good option as the operator will have a good view of the part (with range 360°). All axes as workpiece carrying axes would be a good choice because the toolspindle
could be fixed and made very rigid. There are 20 ways in which the axes can be combined in the workpiece kinematic chain (Section 4.2.1). Here only two kinematic chains will be considered. Case one will be a TTTRR kinematic chain shown in Fig. 15. Case two will be a RRTTT kinematic chain shown in Fig. 16.
For model I a machine with a range of X=300mmY=250 mm, Z=200 mm, C=n 360° and A=360°, and a machine tool table of 100 mm diameter will be considered. For this kinematic chain the tool workspace is a single point. The set of tool reference points which can be selected is also small. With the above machine travel ranges the workpiece workspace will be the space swept by the center of the machine table. If the centerline of the two rotary axes intersect in the reference point, a prismatic workpiece workspace will be obtained with as size XYZ or 300×250×200 mm3. If the centerlines of the two rotary axes do not intersect in the workpiece reference point then the workpiece workspace will be larger.
It will be a prismatic shape with rounded edges. The radius of this rounded edge is the excentricity of the bworkpiece reference point relative to each centerline. Model II in Fig. 15 has the rotary axes at the beginning of the kinematic chain (RRTTT). Here also two different values of the rotary axes excentricity will be considered. The same range of the axes as in model I is considered. The parameters defined in Section 5 are computed for each model and excentricity and summarized in Table 1. It can be seen that with the rotary axes at the end of the kinematic chain (model I), a much smaller machine tool workspace is obtained. There are two main reasons for this. The swept volume of the tool and workpiece WSTOOLWSWORK is much smaller for model I. The second reason is due to the fact that a large part of the machine tool workspace cannot be used in the case of model I, because of interference with the linear axes. The workspace utilization factor however is larger for the model I with no excentricity because the union of the tool workspace and workpiece workspace is relatively smaller compared with model I with excentricity e=50 mm. The orientation space index is the same for both cases if the table diameter is kept the same. Model II can handle much larger workpieces for the same range of linear axes as in model I. The rotary axes are here in the beginning of the kinematic chain, resulting in a much larger machine tool workspace then for model I. Also there is much less interference of the machine tool workspace with the slides. The other 18 possible kinematicchain selections will give index values somewhat in between the above cases.
6.4. rotary table selection
Two machines with the same kinematic diagram (TTRRT) and the same range of travel in the linear axes will be compared (Fig. 17). There are two options for the rotary axes: two-axis table with vertical table (model I), two-axis table with horizontal table (model II). Tables 2 and 3 give the comparison of the important features. It can be observed that reducing the range of the rotary axes increases the machine tool workspace. So model I will be more suited for smaller workpieces with operations which require a large orientation range, typically contouring applications. Model II will be suited for larger workpieces with less variation in tool orientation or will require two setups. This extra setup requirement could be of less importance then the larger size. The horizontal table can use pallets which transform the internal setup to external setup. The larger angle range in the B-axes 105 to +105, Fig. 17. Model I and model II TTRRT machines. compared to 45 to +20, makes model I more suited for complex sculptured surfaces, also because the much higher angular speed range of the vertical angular table. The option with the highest spindle speed should be selected and it will permit the use of smaller cutter diameters resulting in less undercut and smaller cutting forces. The high spindle speed will make the cutting of copper electrodes for die sinking EDM machines easier. The vertical table is also better for the chip removal. The large range of angular orientation, however, reduces the maximum size of the workpiece to about 300 mm and 100 kg. Model II with the same linear axes range as model I, but much smaller range in the rotation, can easily handle a workpiece of double size and weight. Model II will be good for positioning applications. Model I cannot be provided with automatic workpiece exchange, making it less suitable for mass production. Model II has automatic workpiece exchange and is suitable for mass production of position applications. Model I could, however, be selected for positioning applications for parts such as hydraulic valve housings which are small and would require a large angular range.
7.New machine concepts based on the Stewart platform
Conventional machine tool structures are based on Carthesian coordinates. Many surface contouring applications can be machined in optimal conditions only with five-axis machines. This five-axis machine structure requires two additional rotary axes. To make accurate machines, with the required stiffness, able to carry large workpieces, very heavy and large machines are required. As can be seen from the kinematic chain diagram of the classical five-axis machine design the first axis in the chain carries all the subsequent axes. So the dynamic responce will be limited by the combined inertia. A mechanism which can move the workpiece without having to carry the other axes would be the ideal. A new design concept is the use of a ‘HEXAPOD’. Stewart [16] described the hexapod principle in 1965. It was first constructed by Gough and Whitehall [20] in 1954 and served as tire tester. Many possible uses were proposed but it was only applied to flight simulator platforms. The reason was the complexity of the control of the six actuators. Recently with the amazing increase of speed and reduction in cost of computing, the Stewart platform is used by two American Companies in the design of new machine tools. The first machine is the VARIAX machine from the company Giddings and Lewis, USA. The second machine is the HEXAPOD from the Ingersoll company, USA. The systematic design of Hexapods and other similar systems is discussed in Ref. [17]. The problem of defining and determining the workspace of virtual axis machine tools is discussed in Ref. [18]. It can be observed from the design of the machine that once the position of the tool carrying plane is determined uniquely by the CL date (point + vector), it is still possible to rotate the tool carrying platform around the tool axis. This results in a large number of possible length combinations of the telescopic actuators for the same CL data.
8.Conclusion
Theoretically there are large number of ways in which a five-axis machine can be built. Nearly all classical Cartesian five-axis machines belong to the group with three linear and two rotational axes or three rotational axes and two linear axes. This group can be subdivided in six subgroups each with 720 instances.If only the instances with three linear axes are considered there are still 360 instances in each group. The instances are differentiated based on the order of the axes in both tool and workpiece carrying kinematic chain.If only the location of the rotary axes in the tool and workpiece kinematic chain is considered for grouping five-axis machines with three linear axes and two rotational axes, three groups can be distinguished. In the first group the two rotary axes are implemented in the workpiece kinematic chain. In the second group the two rotary axes are implemented in the tool kinematic chain. In the third group there is one rotary axis in each kinematic chain. Each group still has twenty possible instances. To determine the best instance for a specific application area is a complex issue. To facilitate this some indexes for comparison have been defined such as the machine tool workspace, workspace utilization factor, orientation space index, orientation angle index and machine tool space efficiency. An algorithm to compute the machine tool workspace and the diameter of the largest spherical dome which can be machined on the machine was outlined. The use of these indexes for two examples was discussed in detail. The first example considers the design of a five-axis machine for jewelry machining. The second example illustrates the selection of the rotary axes options in the case of a machine with the same range in linear axes.
翻譯題名:Five-axis milling machine tool kinematic chain design and analysis
期刊與作者:E.L.J. Bohez
出版社: International Journal of Machine Tools & Manufacture 42 (2002) 505–520
● 英文譯文
摘要:
現(xiàn)如今五軸數(shù)控加工中心已經(jīng)非常普及。大部分機(jī)床的運(yùn)動(dòng)學(xué)分析都 基于笛卡爾直角坐標(biāo)系。本文羅列了現(xiàn)有的概念設(shè)計(jì)與實(shí)際應(yīng)用,這些從理論上都基于自由度的綜合。一些有用的參數(shù)都有所規(guī)定,比如工件使用系數(shù),機(jī)床空間效率,方向空間搜索以及方向角等。每一種概念,它的優(yōu)缺點(diǎn)都有所分析。選擇的標(biāo)準(zhǔn)及機(jī)器參數(shù)設(shè)置的標(biāo)準(zhǔn)都給出來(lái)了。據(jù)于Stewart平臺(tái)的新概念最近行業(yè)內(nèi)已有介紹并作簡(jiǎn)短討論。
1.緒論
設(shè)計(jì)一臺(tái)數(shù)控機(jī)床主要要遵循以下規(guī)則:
1,刀具和工件在空間方向上要有足夠的靈活性。
2,方向和位置的改變要盡可能的快。
3,方向和位置的改變要盡可能的準(zhǔn)確。
4,刀具和工件快速變、換。
5,環(huán)保
6,切削材料速度快
一臺(tái)數(shù)控機(jī)床的軸的數(shù)目通常取決于其自由度數(shù)目或者獨(dú)立控制運(yùn)動(dòng)的導(dǎo)軌數(shù)目。國(guó)際標(biāo)準(zhǔn)委員會(huì)推薦通過(guò)右手笛卡兒坐標(biāo)系來(lái)命名坐標(biāo)軸,刀具相應(yīng)的為Z軸。一個(gè)三軸銑床有三條導(dǎo)軌,X,Y,Z向,它們可用來(lái)在長(zhǎng)度范圍內(nèi)可以在任意位置移動(dòng)。加工過(guò)程中刀具軸的位置始終不變。這就限制了刀具相對(duì)于工件在方向上變化的靈活性,并且導(dǎo)致許多偏差的出現(xiàn)。為了盡可能的提高刀具相對(duì)于工件的靈活性,無(wú)需重啟,必須要加入多個(gè)自由度。對(duì)于傳統(tǒng)三軸機(jī)床來(lái)說(shuō)這可以通過(guò)提供旋轉(zhuǎn)滑臺(tái)來(lái)實(shí)現(xiàn)。圖1給出了一個(gè)五軸銑床的例子。
圖1 五軸數(shù)控機(jī)床
1.運(yùn)動(dòng)鏈圖表
通過(guò)制作機(jī)器的運(yùn)動(dòng)鏈圖表對(duì)于機(jī)器的分析來(lái)說(shuō)十分有用。通過(guò)運(yùn)動(dòng)簡(jiǎn)圖可知兩組軸可以迅速的區(qū)分開(kāi):工件裝夾軸和刀具軸。圖2給出了圖1.五軸機(jī)床的運(yùn)動(dòng)鏈簡(jiǎn)圖。由圖上可以看出工件由四根軸承載,刀具僅在一根軸上。這個(gè)五軸機(jī)床與兩工位操作機(jī)器人很相似,一個(gè)機(jī)器人夾住工件,另一個(gè)夾住刀具。為了獲得刀具工件方向上的最大自由,五個(gè)自由度已是最低要求,這就意味著工件和刀具可以在任意角度位置相對(duì)定位。最低需求的軸數(shù)也可以通過(guò)剛體運(yùn)動(dòng)學(xué)的方法來(lái)分析。兩個(gè)剛體在空間確定相對(duì)位置,每個(gè)剛體需要6個(gè)到12個(gè)自由度。然而由于任意的移動(dòng)或轉(zhuǎn)動(dòng)并不改變相對(duì)位置就允許將自由度減少到6.兩個(gè)剛體之間的距離通過(guò)刀具軌跡來(lái)描述,并且允許去掉一個(gè)額外的自由度,結(jié)果也就是5個(gè)自由度。
圖2 運(yùn)動(dòng)鏈圖
2.參考文獻(xiàn)
最早(1970年)到目前并且仍就有參考價(jià)值的對(duì)五軸數(shù)控銑床的介紹之一是由 Baughman提出的并清楚的闡述了它的應(yīng)用(附錄1有他的介紹)。APT語(yǔ)言隨后成為唯一的五軸輪廓加工的編程語(yǔ)言之一。后處理階段的問(wèn)題也在數(shù)控發(fā)展的早期由Sim清楚的表述出來(lái)(附錄2有對(duì)他的介紹),并且大部分問(wèn)題到現(xiàn)在仍然有效。Boyd(詳見(jiàn)附錄3)也是最早引進(jìn)數(shù)控機(jī)床的先驅(qū)之一。Beziers的書(見(jiàn)附錄4)也是非常有用的介紹。Held(見(jiàn)附錄5)在他的小型銑削加工的書里對(duì)多軸機(jī)床也有非常簡(jiǎn)短但啟發(fā)性的定義。目前一篇適用于解決五軸數(shù)控機(jī)床工作空間計(jì)算的文章,通過(guò)使用Denawit-Hartenberg發(fā)表并由 Abdel-Malek and Othman(見(jiàn)附錄6)改進(jìn)的算法 應(yīng)用于多弧段切削。許多對(duì)機(jī)床的類型和概念設(shè)計(jì),這些可以被應(yīng)用于五軸機(jī)床,Ref都有討論(見(jiàn)附錄8).關(guān)于對(duì)刀具路徑生成的技巧和新需求由B.K. Choi et al給出(見(jiàn)附錄9)。工件與刀具的圖像模擬也是研究的熱點(diǎn)并且可以在Ref(見(jiàn)附錄10)的書是一個(gè)好的入門讀物。
3.五軸機(jī)床運(yùn)動(dòng)結(jié)構(gòu)的分類
從R軸(旋轉(zhuǎn)軸)和T軸(移動(dòng)軸)劃分大致可以分為四大部分:(i)3個(gè)移動(dòng)軸和2個(gè)轉(zhuǎn)動(dòng)軸;(ii)2個(gè)T軸和3個(gè)R軸;(
收藏