2019-2020年高考數(shù)學(xué)復(fù)習(xí) 導(dǎo)數(shù)應(yīng)用的題型與方法教案 蘇教版.doc
《2019-2020年高考數(shù)學(xué)復(fù)習(xí) 導(dǎo)數(shù)應(yīng)用的題型與方法教案 蘇教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)復(fù)習(xí) 導(dǎo)數(shù)應(yīng)用的題型與方法教案 蘇教版.doc(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)復(fù)習(xí) 導(dǎo)數(shù)應(yīng)用的題型與方法教案 蘇教版 一.復(fù)習(xí)目標(biāo): 1.了解導(dǎo)數(shù)的概念,能利用導(dǎo)數(shù)定義求導(dǎo)數(shù).掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念.了解曲線的切線的概念.在了解瞬時(shí)速度的基礎(chǔ)上抽象出變化率的概念. 2.熟記基本導(dǎo)數(shù)公式(c,x (m為有理數(shù)),sin x, cos x, e, a, lnx, logx的導(dǎo)數(shù))。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù),利能夠用導(dǎo)數(shù)求單調(diào)區(qū)間,求一個(gè)函數(shù)的最大(小)值的問(wèn)題,掌握導(dǎo)數(shù)的基本應(yīng)用. 3.了解函數(shù)的和、差、積的求導(dǎo)法則的推導(dǎo),掌握兩個(gè)函數(shù)的商的求導(dǎo)法則。能正確運(yùn)用函數(shù)的和、差、積的求導(dǎo)法則及已有的導(dǎo)數(shù)公式求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。 4.了解復(fù)合函數(shù)的概念。會(huì)將一個(gè)函數(shù)的復(fù)合過(guò)程進(jìn)行分解或?qū)讉€(gè)函數(shù)進(jìn)行復(fù)合。掌握復(fù)合函數(shù)的求導(dǎo)法則,并會(huì)用法則解決一些簡(jiǎn)單問(wèn)題。 二.考試要求: ⑴了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念。 ⑵熟記基本導(dǎo)數(shù)公式(c,x (m為有理數(shù)),sin x, cos x, e, a,lnx, logx的導(dǎo)數(shù))。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。 ⑶了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)要極值點(diǎn)兩側(cè)異號(hào)),會(huì)求一些實(shí)際問(wèn)題(一般指單峰函數(shù))的最大值和最小值。 三.教學(xué)過(guò)程: (Ⅰ)基礎(chǔ)知識(shí)詳析 導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問(wèn)題的有力工具。在高中階段對(duì)于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面: 1.導(dǎo)數(shù)的常規(guī)問(wèn)題: (1)刻畫函數(shù)(比初等方法精確細(xì)微); (2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線); (3)應(yīng)用問(wèn)題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問(wèn)題屬于較難類型。 2.關(guān)于函數(shù)特征,最值問(wèn)題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。 3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問(wèn)題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。 4.曲線的切線 在初中學(xué)過(guò)圓的切線,直線和圓有惟一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,惟一的公共點(diǎn)叫做切點(diǎn).圓是一種特殊的曲線,能不能將圓的切線的概念推廣為一段曲線的切線,即直線和曲線有惟一公共點(diǎn)時(shí),直線叫做曲線過(guò)該點(diǎn)的切線,顯然這種推廣是不妥當(dāng)?shù)模鐖D3—1中的曲線C是我們熟知的正弦曲線y=sinx.直線與曲線C有惟一公共點(diǎn)M,但我們不能說(shuō)直線與曲線C相切;而直線盡管與曲線C有不止一個(gè)公共點(diǎn),我們還是說(shuō)直線是曲線C在點(diǎn)N處的切線.因此,對(duì)于一般的曲線,須重新尋求曲線的切線的定義.所以課本利用割線的極限位置來(lái)定義了曲線的切線. 5.瞬時(shí)速度 在高一物理學(xué)習(xí)直線運(yùn)動(dòng)的速度時(shí),涉及過(guò)瞬時(shí)速度的一些知識(shí),物理教科書中首先指出:運(yùn)動(dòng)物體經(jīng)過(guò)某一時(shí)刻(或某一位置)的速度叫做瞬時(shí)速度,然后從實(shí)際測(cè)量速度出發(fā),結(jié)合汽車速度儀的使用,對(duì)瞬時(shí)速度作了說(shuō)明.物理課上對(duì)瞬時(shí)速度只給出了直觀的描述,有了極限工具后,本節(jié)教材中是用物體在一段時(shí)間運(yùn)動(dòng)的平均速度的極限來(lái)定義瞬時(shí)速度. 6.導(dǎo)數(shù)的定義 導(dǎo)數(shù)定義與求導(dǎo)數(shù)的方法是本節(jié)的重點(diǎn),推導(dǎo)導(dǎo)數(shù)運(yùn)算法則與某些導(dǎo)數(shù)公式時(shí),都是以此為依據(jù). 對(duì)導(dǎo)數(shù)的定義,我們應(yīng)注意以下三點(diǎn): (1)△x是自變量x在 處的增量(或改變量). (2)導(dǎo)數(shù)定義中還包含了可導(dǎo)或可微的概念,如果△x→0時(shí),有極限,那么函數(shù)y=f(x)在點(diǎn)處可導(dǎo)或可微,才能得到f(x)在點(diǎn)處的導(dǎo)數(shù). (3)如果函數(shù)y=f(x)在點(diǎn)處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)處連續(xù)(由連續(xù)函數(shù)定義可知).反之不一定成立.例如函數(shù)y=|x|在點(diǎn)x=0處連續(xù),但不可導(dǎo). 由導(dǎo)數(shù)定義求導(dǎo)數(shù),是求導(dǎo)數(shù)的基本方法,必須嚴(yán)格按以下三個(gè)步驟進(jìn)行: (1)求函數(shù)的增量; (2)求平均變化率; (3)取極限,得導(dǎo)數(shù)。 7.導(dǎo)數(shù)的幾何意義 函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率.由此,可以利用導(dǎo)數(shù)求曲線的切線方程.具體求法分兩步: (1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率; (2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為 特別地,如果曲線y=f(x)在點(diǎn)處的切線平行于y軸,這時(shí)導(dǎo)數(shù)不存,根據(jù)切線定義,可得切線方程為 8.和(或差)的導(dǎo)數(shù) 對(duì)于函數(shù)的導(dǎo)數(shù),如何求呢?我們不妨先利用導(dǎo)數(shù)的定義來(lái)求。 我們不難發(fā)現(xiàn),即兩函數(shù)和的導(dǎo)數(shù)等于這兩函數(shù)的導(dǎo)數(shù)的和。 由此我們猜測(cè)在一般情況下結(jié)論成立。事實(shí)上教材中證明了我們的猜想,這就是兩個(gè)函數(shù)的和(或差)的求導(dǎo)法則。 9.積的導(dǎo)數(shù) 兩個(gè)函數(shù)的積的求導(dǎo)法則的證明是本節(jié)的一個(gè)難點(diǎn),證明過(guò)程中變形的關(guān)鍵是依據(jù)導(dǎo)數(shù)定義的結(jié)構(gòu)形式。(具體過(guò)程見課本P120) 說(shuō)明: (1); (2)若c為常數(shù),則(cu) ′=cu′。 10.商的導(dǎo)數(shù) 兩個(gè)函數(shù)的商的求導(dǎo)法則,課本中未加證明,只要求記住并能運(yùn)用就可以?,F(xiàn)補(bǔ)充證明如下: 設(shè) 因?yàn)関(x)在點(diǎn)x處可導(dǎo),所以它在點(diǎn)x處連續(xù),于是△x→0時(shí),v(x+△x)→v(x),從而 即。 說(shuō)明:(1); (2) 學(xué)習(xí)了函數(shù)的和、差、積、商的求導(dǎo)法則后,由常函數(shù)、冪函數(shù)及正、余弦函數(shù)經(jīng)加、減、乘、除運(yùn)算得到的簡(jiǎn)單的函數(shù),均可利用求導(dǎo)法則與導(dǎo)數(shù)公式求導(dǎo),而不需要回到導(dǎo)數(shù)的定義去求。 11. 導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系 ㈠與為增函數(shù)的關(guān)系。 能推出為增函數(shù),但反之不一定。如函數(shù)在上單調(diào)遞增,但,∴是為增函數(shù)的充分不必要條件。 ㈡時(shí),與為增函數(shù)的關(guān)系。 若將的根作為分界點(diǎn),因?yàn)橐?guī)定,即摳去了分界點(diǎn),此時(shí)為增函數(shù),就一定有。∴當(dāng)時(shí),是為增函數(shù)的充分必要條件。 ㈢與為增函數(shù)的關(guān)系。 為增函數(shù),一定可以推出,但反之不一定,因?yàn)椋礊榛?。?dāng)函數(shù)在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù),函數(shù)不具有單調(diào)性。∴是為增函數(shù)的必要不充分條件。 函數(shù)的單調(diào)性是函數(shù)一條重要性質(zhì),也是高中階段研究的重點(diǎn),我們一定要把握好以上三個(gè)關(guān)系,用導(dǎo)數(shù)判斷好函數(shù)的單調(diào)性。因此新教材為解決單調(diào)區(qū)間的端點(diǎn)問(wèn)題,都一律用開區(qū)間作為單調(diào)區(qū)間,避免討論以上問(wèn)題,也簡(jiǎn)化了問(wèn)題。但在實(shí)際應(yīng)用中還會(huì)遇到端點(diǎn)的討論問(wèn)題,要謹(jǐn)慎處理。 ㈣單調(diào)區(qū)間的求解過(guò)程,已知 (1)分析 的定義域; (2)求導(dǎo)數(shù) (3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間 (4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間 我們?cè)趹?yīng)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性時(shí)一定要搞清以下三個(gè)關(guān)系,才能準(zhǔn)確無(wú)誤地判斷函數(shù)的單調(diào)性。以下以增函數(shù)為例作簡(jiǎn)單的分析,前提條件都是函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo)。 ㈤函數(shù)單調(diào)區(qū)間的合并 函數(shù)單調(diào)區(qū)間的合并主要依據(jù)是函數(shù)在單調(diào)遞增,在單調(diào)遞增,又知函數(shù)在處連續(xù),因此在單調(diào)遞增。同理減區(qū)間的合并也是如此,即相鄰區(qū)間的單調(diào)性相同,且在公共點(diǎn)處函數(shù)連續(xù),則二區(qū)間就可以合并為以個(gè)區(qū)間。 (1)恒成立 ∴為上 ∴ 對(duì)任意 不等式 恒成立 (2)恒成立 ∴ 在上 ∴ 對(duì)任意不等式 恒成立 ㈥注意事項(xiàng) 1.導(dǎo)數(shù)概念的理解. 2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問(wèn)題的最大值與最小值. 復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過(guò)實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來(lái)對(duì)法則進(jìn)行了證明。 對(duì)于復(fù)合函數(shù),以前我們只是見過(guò),沒(méi)有專門定義和介紹過(guò)它,課本中以描述性的方式對(duì)復(fù)合函數(shù)加以直觀定義,使我們對(duì)復(fù)合函數(shù)的的概念有一個(gè)初步的認(rèn)識(shí),再結(jié)合以后的例題、習(xí)題就可以逐步了解復(fù)合函數(shù)的概念。 3.要能正確求導(dǎo),必須做到以下兩點(diǎn): (1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。 (2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。 4.求復(fù)合函數(shù)的導(dǎo)數(shù),一般按以下三個(gè)步驟進(jìn)行: (1)適當(dāng)選定中間變量,正確分解復(fù)合關(guān)系; (2)分步求導(dǎo)(弄清每一步求導(dǎo)是哪個(gè)變量對(duì)哪個(gè)變量求導(dǎo)); (3)把中間變量代回原自變量(一般是x)的函數(shù)。 也就是說(shuō),首先,選定中間變量,分解復(fù)合關(guān)系,說(shuō)明函數(shù)關(guān)系y=f(μ),μ=f(x);然后將已知函數(shù)對(duì)中間變量求導(dǎo),中間變量對(duì)自變量求導(dǎo);最后求,并將中間變量代回為自變量的函數(shù)。整個(gè)過(guò)程可簡(jiǎn)記為分解——求導(dǎo)——回代。熟練以后,可以省略中間過(guò)程。若遇多重復(fù)合,可以相應(yīng)地多次用中間變量。 (Ⅱ) 范例分析 例1. 在處可導(dǎo),則 思路: 在處可導(dǎo),必連續(xù) ∴ ∴ 例2.已知f(x)在x=a處可導(dǎo),且f′(a)=b,求下列極限: (1); (2) 分析:在導(dǎo)數(shù)定義中,增量△x的形式是多種多樣,但不論△x選擇哪種形式,△y也必須選擇相對(duì)應(yīng)的形式。利用函數(shù)f(x)在處可導(dǎo)的條件,可以將已給定的極限式恒等變形轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。 解:(1) (2) 說(shuō)明:只有深刻理解概念的本質(zhì),才能靈活應(yīng)用概念解題。解決這類問(wèn)題的關(guān)鍵是等價(jià)變形,使極限式轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。 例3.觀察,,,是否可判斷,可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。 解:若為偶函數(shù) 令 ∴ 可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù) 另證: ∴ 可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù) 例4.(1)求曲線在點(diǎn)(1,1)處的切線方程; (2)運(yùn)動(dòng)曲線方程為,求t=3時(shí)的速度。 分析:根據(jù)導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)的物理意義可知,函數(shù)y=f(x)在處的導(dǎo)數(shù)就是曲線y=f(x)在點(diǎn)處的切線的斜率。瞬時(shí)速度是位移函數(shù)S(t)對(duì)時(shí)間的導(dǎo)數(shù)。 解:(1), ,即曲線在點(diǎn)(1,1)處的切線斜率k=0 因此曲線在(1,1)處的切線方程為y=1 (2) 。 例5. 求下列函數(shù)單調(diào)區(qū)間 (1) (2) (3) (4) 解:(1) 時(shí) ∴ , (2) ∴ , (3) ∴ ∴ , , (4) 定義域?yàn)? 例6.求證下列不等式 (1) (2) (3) 證:(1) ∴ 為上 ∴ 恒成立 ∴ ∴ 在上 ∴ 恒成立 (2)原式 令 ∴ ∴ ∴ (3)令 ∴ ∴ 例7.利用導(dǎo)數(shù)求和: (1); (2)。 分析:這兩個(gè)問(wèn)題可分別通過(guò)錯(cuò)位相減法及利用二項(xiàng)式定理來(lái)解決。轉(zhuǎn)換思維角度,由求導(dǎo)公式,可聯(lián)想到它們是另外一個(gè)和式的導(dǎo)數(shù),利用導(dǎo)數(shù)運(yùn)算可使問(wèn)題的解決更加簡(jiǎn)捷。 解:(1)當(dāng)x=1時(shí), ; 當(dāng)x≠1時(shí), ∵, 兩邊都是關(guān)于x的函數(shù),求導(dǎo)得 即 (2)∵, 兩邊都是關(guān)于x的函數(shù),求導(dǎo)得。 令x=1得 , 即。 例8.求滿足條件的 (1)使為上增函數(shù) (2)使為上…… (3)使為上 解:(1) ∴ 時(shí) 也成立 ∴ (2) 時(shí) 也成立 ∴ (3) 例9.(1)求證 (2) 求證 (1)證:令 ∴ 原不等式 令 ∴ ∴ ∴ ∴ 令 ∴ ∴ ∴ ∴ ∴ (2)令 上式也成立 將各式相加 即 例10. 設(shè),求函數(shù)的單調(diào)區(qū)間. 分析:本小題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力. 解:. 當(dāng)時(shí) . (i)當(dāng)時(shí),對(duì)所有,有. 即,此時(shí)在內(nèi)單調(diào)遞增. (ii)當(dāng)時(shí),對(duì),有, 即,此時(shí)在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)在x=1處連續(xù),因此, 函數(shù)在(0,+)內(nèi)單調(diào)遞增 (iii)當(dāng)時(shí),令,即. 解得. 因此,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間 內(nèi)也單調(diào)遞增. 令, 解得. 因此,函數(shù)在區(qū)間內(nèi)單調(diào)遞減. 說(shuō)明:本題用傳統(tǒng)作差比較法無(wú)法劃分函數(shù)的單調(diào)區(qū)間,只有用導(dǎo)數(shù)才行,這是教材新增的內(nèi)容。其理論依據(jù)如下(人教版試驗(yàn)本第三冊(cè)P148): 設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù)。如果,則為常數(shù)。 例11.已知拋物線與直線y=x+2相交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的切線分別為和。 (1)求A、B兩點(diǎn)的坐標(biāo); (2)求直線與的夾角。 分析:理解導(dǎo)數(shù)的幾何意義是解決本例的關(guān)鍵。 解 (1)由方程組 解得 A(-2,0),B(3,5) (2)由y′=2x,則,。設(shè)兩直線的夾角為θ,根據(jù)兩直線的夾角公式, 所以 說(shuō)明:本例中直線與拋物線的交點(diǎn)處的切線,就是該點(diǎn)處拋物線的切線。注意兩條直線的夾角公式有絕對(duì)值符號(hào)。 例12.設(shè),是上的偶函數(shù)。 (I)求的值; (II)證明在上是增函數(shù)。 解:(I)依題意,對(duì)一切有,即, ∴對(duì)一切成立, 由此得到,, 又∵,∴。 (II)證明:由,得, 當(dāng)時(shí),有,此時(shí)。 ∴在上是增函數(shù)。 例13.設(shè)函數(shù),其中。 (I)解不等式; (II)證明:當(dāng)時(shí),函數(shù)在區(qū)間上是單調(diào)函數(shù)。 解1:(I)分類討論解無(wú)理不等式(略)。 (II)作差比較(略)。 解2: (i)當(dāng)時(shí),有,此時(shí),函數(shù)在區(qū)間上是單調(diào)遞減函數(shù)。但,因此,當(dāng)且僅當(dāng)時(shí),。 (ii)當(dāng)時(shí),解不等式,得,在區(qū)間上是單調(diào)遞減函數(shù)。 解方程,得或, ∵, ∴當(dāng)且僅當(dāng)時(shí),, 綜上,(I)當(dāng)時(shí),所給不等式的解集為:; 當(dāng)時(shí),所給不等式的解集為:。 (II)當(dāng)且僅當(dāng)時(shí),函數(shù)在區(qū)間上時(shí)單調(diào)函數(shù)。 例14. 已知,函數(shù)設(shè),記曲線在點(diǎn)處的切線為。 (Ⅰ)求的方程; (Ⅱ)設(shè)與軸的交點(diǎn)為,證明:①②若,則 解:(1)的導(dǎo)數(shù),由此得切線的方程 , (2)依題得,切線方程中令,得 ,其中, (?。┯桑?,有,及, ∴,當(dāng)且僅當(dāng)時(shí),。 (ⅱ)當(dāng)時(shí),,因此,,且由(ⅰ),, 所以。 例15. 已知為正整數(shù). (Ⅰ)設(shè); (Ⅱ)設(shè) 分析:本題主要考查導(dǎo)數(shù)、不等式證明等知識(shí),考查綜合運(yùn)用所數(shù)學(xué)知識(shí)解決問(wèn)題的能力。 證明:(Ⅰ)因?yàn)椋? 所以 (Ⅱ)對(duì)函數(shù)求導(dǎo)數(shù): ∴ 即對(duì)任意 (Ⅲ)、強(qiáng)化訓(xùn)練 1.設(shè)函數(shù)f(x)在處可導(dǎo),則等于 ( ) A. B. C. D. 2.若,則等于 ( ) A. B. C.3 D.2 3.曲線上切線平行于x軸的點(diǎn)的坐標(biāo)是 ( ) A.(-1,2) B.(1,-2) C.(1,2) D.(-1,2)或(1,-2) 4.若函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=-sinx,則函數(shù)圖像在點(diǎn)(4,f(4))處的切線的傾斜角為( ) A.90 B.0 C.銳角 D.鈍角 5.函數(shù)在[0,3]上的最大值、最小值分別是 ( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-16 6.一直線運(yùn)動(dòng)的物體,從時(shí)間t到t+△t時(shí),物體的位移為△s,那么為( ) A.從時(shí)間t到t+△t時(shí),物體的平均速度 B.時(shí)間t時(shí)該物體的瞬時(shí)速度 C.當(dāng)時(shí)間為△t 時(shí)該物體的速度 D.從時(shí)間t到t+△t時(shí)位移的平均變化率 7.關(guān)于函數(shù),下列說(shuō)法不正確的是 ( ) A.在區(qū)間(,0)內(nèi),為增函數(shù) B.在區(qū)間(0,2)內(nèi),為減函數(shù) C.在區(qū)間(2,)內(nèi),為增函數(shù) D.在區(qū)間(,0)內(nèi),為增函數(shù) 8.對(duì)任意x,有,f(1)=-1,則此函數(shù)為 ( ) A. B. C. D. 9.函數(shù)y=2x3-3x2-12x+5在[0,3]上的最大值與最小值分別是 ( ) A.5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 10.設(shè)f(x)在處可導(dǎo),下列式子中與相等的是 ( ) (1); (2); (3) (4)。 A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)(4) 11.f()是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示:令g()=af()+b,則下 列關(guān)于函數(shù)g()的敘述正確的是( ) A.若a<0,則函數(shù)g()的圖象關(guān)于原點(diǎn)對(duì)稱. B.若a=-1,-2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)復(fù)習(xí) 導(dǎo)數(shù)應(yīng)用的題型與方法教案 蘇教版 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 導(dǎo)數(shù) 應(yīng)用 題型 方法 教案
鏈接地址:http://m.kudomayuko.com/p-2727819.html