2019-2020年高中數(shù)學(xué)《雙曲線的定義及其標準方程》說課稿.doc
《2019-2020年高中數(shù)學(xué)《雙曲線的定義及其標準方程》說課稿.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《雙曲線的定義及其標準方程》說課稿.doc(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《雙曲線的定義及其標準方程》說課稿 各位專家,各位老師: 大家好!我叫***,來自于******。很高興能在這里和大家進行交流。 我說課的題目是《雙曲線的定義及其標準方程》,內(nèi)容選自于北師大版《高中數(shù)學(xué)實驗教材》高二下冊第九章第二單元第一小節(jié),課時安排為兩課時,本課內(nèi)容為第一課時。下面我將從教材分析與處理、教學(xué)方法與手段、教學(xué)過程與設(shè)計、教學(xué)設(shè)計想法說明四大方面來闡述我的教學(xué)設(shè)想。 一、教材分析與處理 1、 教材的地位與作用 學(xué)生初步認識圓錐曲線是從橢圓開始的,雙曲線的學(xué)習(xí)是對其研究內(nèi)容的進一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學(xué)習(xí)就會順理成章。所以說本節(jié)課的作用就是縱向承接橢圓定義和標準方程的研究,橫向為雙曲線的簡單性質(zhì)的學(xué)習(xí)打下基礎(chǔ)。 2、 學(xué)生狀況分析: 學(xué)生在學(xué)習(xí)這節(jié)課之前,已掌握了橢圓的定義和標準方程,也曾經(jīng)嘗試過探究式的學(xué)習(xí)方式,所以說從知識和學(xué)習(xí)方式上來說學(xué)生已具備了自行探索和推導(dǎo)方程的基礎(chǔ)。另外,高二學(xué)生思維活躍,敢于表現(xiàn)自己,不喜歡被動地接受別人現(xiàn)成的觀點,但同時也缺乏發(fā)現(xiàn)問題和提出問題的意識。 根據(jù)以上對教材和學(xué)生的分析,考慮到學(xué)生已有的認知規(guī)律我希望學(xué)生能達到以下三個教學(xué)目標。 3、 教學(xué)目標 (1)知識與技能:理解雙曲線的定義并能獨立推導(dǎo)標準方程; (2)過程與方法:通過定義及標準方程的挖掘與探究 ,使學(xué)生進一步體驗類比及數(shù)形結(jié)合等思想方法的運用,提高學(xué)生的觀察與探究能力; (3)情感態(tài)度與價值觀:通過教師指導(dǎo)下的學(xué)生交流探索活動,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生用聯(lián)系的觀點認識問題。 4. 教學(xué)重點、難點 依據(jù)教學(xué)目標,根據(jù)學(xué)生的認知規(guī)律,確定本節(jié)課的重點是理解和掌握雙曲線的定義及其標準方程。難點是雙曲線標準方程的推導(dǎo)。 5、 教材處理: 我對教學(xué)內(nèi)容作了一點調(diào)整:教材中是借用細繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙 曲線圖形。因為相比之下,幾何畫板更為形象直觀。通過幾何畫板,學(xué)生不僅可看到雙曲線形 成的過程,而且較易看出橢圓與雙曲線形成的聯(lián)系和區(qū)別。 二、 教學(xué)方法與教學(xué)手段 1、教學(xué)方法 著名數(shù)學(xué)家波利亞認為:“學(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)。” 雙曲線的定義和標準方程與橢圓很類似,學(xué)生已經(jīng)有了一些學(xué)習(xí)橢圓的經(jīng)驗, 所以本節(jié)課我 采用了“啟發(fā)探究”式的教學(xué)方法,重點突出以下兩點: (1) 以類比思維作為教學(xué)的主線 (2) 以自主探究作為學(xué)生的學(xué)習(xí)方法 2、 教學(xué)手段 采用多媒體輔助教學(xué)。體現(xiàn)在用幾何畫板畫雙曲線。但不是單純用動畫演示給學(xué)生看,而是用動畫啟發(fā)引導(dǎo)學(xué)生思考,調(diào)動學(xué)生學(xué)習(xí)的積極性。 三、教學(xué)過程與設(shè)計 為達到本節(jié)課的教學(xué)目標,更好地突出重點,分散難點,我把教學(xué)過程分為四個階段。 (一) 知識引入---- 知識回顧、觀察動畫、概括定義 在課的開始我設(shè)置了這樣幾個問題,以幫助學(xué)生進行知識回顧: (1) 橢圓的第一定義是什么?定義中哪些字非常關(guān)鍵? (2) 橢圓的標準方程是什么? (3) 如何判斷焦點位置?a、b、c是何種關(guān)系?(片) 通過回顧,既檢測了學(xué)生對前面知識的掌握情況,同時又為下面雙曲線的學(xué)習(xí)做好鋪墊。之后, 告訴學(xué)生:今天要學(xué)習(xí)一種新的曲線。 打開幾何畫板,首先通過動畫讓學(xué)生再一次回顧橢圓的生成過程,然后改變圖中的條件,將 距離變大,動畫生成一種新的曲線,學(xué)生易看出該曲線為雙曲線。 雙曲線的定義其實就是動點所滿足的關(guān)系,那么雙曲線的定義是什么?也就是動點所滿足的關(guān)系是 什么?這個問題可讓學(xué)生進行探究。 解決這個問題有兩個難點:一是距離的運算關(guān)系的得出;二是運算關(guān)系的簡化。 在探究中,學(xué)生類比橢圓會想到動點到兩定點的距離差為定值,會認為這個定值必是正值,而忽視 了距離差為負值的情況,這樣實質(zhì)上只能得到雙曲線的一支。對于這種情況,我采取啟發(fā)引導(dǎo),把 P從一支移到另一支,然后讓學(xué)生再次思考自己得到的關(guān)系是否正確。在引導(dǎo)下,學(xué)生會想到自己缺少 一種情況,動點到兩定點的距離差為正值或正值的相反數(shù)。但這個關(guān)系能不能加以簡化?學(xué)生這個時候 會聯(lián)想到利用絕對值進行簡化。這樣就得到了動點所滿足的較為精煉的關(guān)系,也就是得到了雙曲線的 定義。 這一設(shè)計讓學(xué)生先形象直觀地看到橢圓與雙曲線的形成過程,在此基礎(chǔ)上,再通過教師的引導(dǎo),學(xué) 生就可在觀察思考中一步一步地由感性認識上升到理性認識,最終得到雙曲線定義,從而培養(yǎng)了學(xué)生的 觀察能力及概括能力。另外,這一設(shè)計也在形的方面實現(xiàn)了橢圓與雙曲線的比較,也為下面雙曲線定義 的挖掘及兩種曲線的對比打下基礎(chǔ)。 隨著雙曲線定義的得出,教學(xué)進入第二階段---知識探索 (二) 知識探索---- 定義的挖掘、標準方程的推導(dǎo)、方程的對比 1、定義的挖掘 在這一環(huán)節(jié)中,我們要認識到定義中的絕對值和兩點間距離與常數(shù)的大小關(guān)系二者對曲線的影響。 首先,我設(shè)置了這樣兩個問題: (1)類比橢圓尋找雙曲線定義中的關(guān)鍵字; (2)若分別去掉這幾個關(guān)鍵字曲線會發(fā)生怎樣變化?(片) 然后讓學(xué)生帶著問題進行合作探究,教師可適當(dāng)引導(dǎo),對于學(xué)生難以理解的地方適時給予幫助指導(dǎo)。 雖然學(xué)生學(xué)習(xí)橢圓定義時也接觸過類似問題,但雙曲線較為復(fù)雜,比如 :增加了“絕對值”等等。學(xué)生要獨立完成會較為困難,所以采取合作探究。這個過程既可以加深學(xué)生對定義的理解,又讓可學(xué)生在相互交流中互相啟發(fā)、激勵、共同進步提高,從而培養(yǎng)學(xué)生的表達能力和協(xié)作能力。 在得出結(jié)論后,我又為學(xué)生提供了以下題目: 請說出下列方程對應(yīng)曲線的名稱: (3) (雙曲線) (4) (雙曲線右支) (5) (橢圓) (6)(以(0,4)為端點,沿著y軸正向的一條線)(片) 這些題目由淺入深,前面兩題學(xué)生可由雙曲線定義直接認識到動點的幾何含義,后四題需根據(jù)兩點間距離公式及橢圓雙曲線定義間接認識到動點的幾何含義。這樣設(shè)置有了過渡,學(xué)生不會覺得跨度很大,處理起來比較順手。通過這些題的練習(xí)可以加深學(xué)生對定義的理解,更重要的這些題目就是學(xué)生對自己研究結(jié)果的應(yīng)用。讓學(xué)生體驗到應(yīng)用自己探究果實的喜悅,對學(xué)生來說是一種激勵,一舉兩得。 2、 標準方程的推導(dǎo) 這一環(huán)節(jié)是本節(jié)課的難點,為了突破它,我設(shè)置了這樣幾個問題讓其貫穿推導(dǎo)過程以將難點分解: (1) 回顧橢圓標準方程的推導(dǎo)步驟及方法; (2) 類比橢圓試著推導(dǎo)雙曲線的標準方程; (3) 換元處理與橢圓有沒有區(qū)別? (4) 猜證雙曲線焦點在 y軸上的標準方程。(片) 然后讓學(xué)生獨立完成推導(dǎo)過程。 這樣設(shè)置的目的是考慮到由定義求方程,就是求軌跡方程的問題,并且雙曲線的標準方程推導(dǎo)過程 與橢圓十分類似,學(xué)生有能力獨立完成。但在由于化簡根式時運算量較大,處理起來很可能出現(xiàn)一些運 算錯誤。另外,變形時絕大多數(shù)學(xué)生會想到先移項再平方,少部分學(xué)生會直接平方。若直接平方,就會 出現(xiàn)4次方,較為復(fù)雜。如果在實際教學(xué)中,有學(xué)生提出這種做法,我會讓然后讓大家參與分析討論, 看看哪種做法更為簡便。以讓學(xué)生認識到今后在變形前要考慮清楚不要盲目去做。 整個這個推導(dǎo)過程,不僅提高了學(xué)生的變形能力、運算能力,而且也提高學(xué)生的分析問題和解決問題 的能力。 3、 方程的對比 此時,學(xué)生接觸的方程已比較多,很容易混淆,有必要加以對比。 我引導(dǎo)學(xué)生進行以下兩組對比:(1)雙曲線方程的兩種形式的對比;(2)橢圓方程與雙曲線方程 的對比。(片) 對比時會讓學(xué)生注意方程結(jié)構(gòu)的區(qū)別和聯(lián)系,比如說:到底是平方差還是平方和。另外,還要注意 橢圓方程和雙曲線方程都涉及到的三個量a、b、c它們的區(qū)別和聯(lián)系。 對比后,學(xué)生可初步的分清四個標準方程及知道如何判斷a、b 、c。 之后,我又準備了這樣一組題: 請說出下列方程所表示曲線的焦點位置及a、 b 、c的值: (片) 可以檢測學(xué)生對四個方程的掌握程度。學(xué)生處理時,前三題起來會比較順利,第4題很可能出現(xiàn) 問題。因為需變成標準形式之后再判斷焦點位置及a、b、c的值。 (三) 知識應(yīng)用----例題與鞏固練習(xí) 1、例題: 在本環(huán)節(jié)中我為學(xué)生準備處理兩道例題,例題可由學(xué)生講解,教師指導(dǎo)補充。 例1、 已知雙曲線焦點的坐標為 ,雙曲線上一點P到 的距離的差的 絕對值等于6,求雙曲線的標準方程。 這道題難度不大,可直接利用定義求標準方程。也可以按求軌跡方程的方法求標準方程,學(xué)生 不會出現(xiàn)太大問題。但是要向?qū)W生指明,如果某種軌跡適合某種曲線的定義,就不必再用列方程求解, 只要利用定義求出常規(guī)待定函數(shù)即可。 例2、 已知雙曲線的焦點在y 軸上,并且雙曲線上兩點的坐標為 求雙曲線的標準方程。(片) 這道題可采用待定系數(shù)法求標準方程。本題中雙曲線焦點在y軸上,學(xué)生在求解過程中很可能會 忽視這個條件,易將方程設(shè)成焦點在x軸的。教師可及時加以強調(diào),讓學(xué)生注意審題,以培養(yǎng)學(xué)生緊密 的思維和嚴謹?shù)膶W(xué)習(xí)態(tài)度。 設(shè)置兩道題是考慮到他們都來源于教材,緊緊圍繞雙曲線的定義和標準方程,題目典型而且也有 梯度,可使學(xué)生初步掌握定義及標準方程的應(yīng)用。 2、 鞏固練習(xí) 練習(xí)是學(xué)習(xí)活動中不可缺少的環(huán)節(jié),可鞏固對知識的理解,在這一環(huán)節(jié)我為學(xué)生準備了三道 練習(xí)題。 (1)已知雙曲線的實軸長為6,焦距為10,則該雙曲線的標準方程為( ) A. B. C. 或 D. 或 此題是求焦點不確定的雙曲線標準方程,學(xué)生易忽視焦點在y軸的情況,通過此題的練習(xí)可以提醒 學(xué)生考慮問題要全面。 (2)已知方程表示雙曲線,求m取值范圍。 此題限制條件為m+2 和m+1同號,但會有一些學(xué)生會認為它們均大于0,忽視了均小于0 的情況,因此會丟解,所以通過這道題的練習(xí)會提醒學(xué)生考慮問題要認真、全面,同時又可加深學(xué) 生對定義及標準方程的理解。 (3)相距2km的兩個哨所A,B都聽到遠處傳來的炮彈爆炸聲,已知當(dāng)時的聲速為330m\s, 在A哨所聽到爆炸聲的時間比在B處遲4s。試判斷爆炸點在什么上,并求出曲線的方程。(片) 這道題是從生活中提煉出的數(shù)學(xué)問題,設(shè)計此題的目的是想通過練習(xí)題的解決可以加強學(xué)生的 應(yīng)用能力及應(yīng)用意識,讓學(xué)生感悟到數(shù)學(xué)是源于生活,服務(wù)于生活的辨證唯物主義觀點。 (四)知識小結(jié)----歸納知識與布置作業(yè) 1、知識總結(jié): (1)雙曲線的定義 (與橢圓的區(qū)別) (2)標準方程 (兩種形式) (3)焦點位置的判斷 (與橢圓的區(qū)別) (4)a 、b、 c的關(guān)系(與橢圓的區(qū)別)(片) 在課的尾聲,我讓學(xué)生對本節(jié)課進行了總結(jié)。目的是幫助他們認清這節(jié)課的知識結(jié)構(gòu), 培 養(yǎng)他們的歸納總結(jié)能力。 2、 作業(yè): (1) 用表格形式整理雙曲線與橢圓的區(qū)別和聯(lián)系 (2) 142頁第1、2題 (3) (選做)M是雙曲線上一點,是雙曲線的焦點,,求 的面積。若使雙曲線的方程和角度任意變化,你能得出一般性的結(jié)論?(片) 教學(xué)內(nèi)涵不局限于課堂,為了幫助學(xué)生課下能夠繼續(xù)探索和研究,我設(shè)置了幾組不同層次的作 業(yè),以幫助學(xué)生鞏固對定義和標準方程的理解,同時可全面照顧到不同層次的學(xué)生,激發(fā)他們的能動性。 板書設(shè)計 雙曲線的定義及其標準方程 一、 雙曲線的定義 三 例1: 定義的挖掘 二、 雙曲線的標準方程 例2 1、 推導(dǎo): 2、 對比: (片) 這樣的板書設(shè)計目的是為了突出這節(jié)課的主要內(nèi)容和重點,幫助學(xué)生理清思緒,起到提綱 挈領(lǐng)的作用。 四、教學(xué)設(shè)計的想法說明: 我在教學(xué)過程設(shè)計方面注意了三點: 1. 教學(xué)過程的著力點放在了如何激發(fā)學(xué)生的學(xué)習(xí)動機,培養(yǎng)學(xué)生的學(xué)習(xí)興趣上,這是喚醒學(xué)生主 體認識的關(guān)鍵。 2. 教學(xué)過程的重點放在了培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力上,而把握重點的關(guān)鍵是如何選擇好創(chuàng)新 精神、實踐能力與課堂教學(xué)的結(jié)合,這個結(jié)合點從學(xué)科來說,就是以科學(xué)知識為載體,培養(yǎng)學(xué)生 的創(chuàng)新思維方法;從教師來說就是“思路、教路、學(xué)路”三者有機結(jié)合的教學(xué)過程設(shè)計,及其在 課堂中的藝術(shù)展現(xiàn);從學(xué)生來說,就是親歷、體驗、探究、思考和創(chuàng)造性的解決問題的過程,從 而在過程中獲得逐步發(fā)展。 3. 教學(xué)過程的基本點放在了夯實基礎(chǔ)知識和訓(xùn)練基本技能上,基礎(chǔ)知識的教學(xué)注重了層次性、針對性。 我在教學(xué)理念方面注重了四點 第一是能動性:師生互動、生生互動,學(xué)生主動參與研究過程。 第二是開放性:教學(xué)過程中關(guān)注每個學(xué)生的個性發(fā)展,尊重每個學(xué)生發(fā)展的特殊需要,學(xué)生的思維開放。 第三是生成性:在教學(xué)過程中,學(xué)生的認識和體驗不斷加深,創(chuàng)造性的火花不斷進發(fā),學(xué)生的思維資源 被開發(fā)出來,充分利用。 第四是注意了學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,既注重了研究性學(xué)習(xí),又注重了接受性學(xué)習(xí),教師不把現(xiàn)成結(jié)論告 訴學(xué)生,而是學(xué)生自己在教師指導(dǎo)下自主地發(fā)現(xiàn)問題、探究問題獲得結(jié)論,從而解決問題。對于新概念教學(xué) 的我采取了教授性學(xué)習(xí)方式。 我的說課到此結(jié)束,謝謝大家!- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 雙曲線的定義及其標準方程 2019 2020 年高 數(shù)學(xué) 雙曲線 定義 及其 標準 方程 說課稿
鏈接地址:http://m.kudomayuko.com/p-2820130.html