2019年高考數學真題分類匯編 17 坐標系與參數方程 理 .doc
《2019年高考數學真題分類匯編 17 坐標系與參數方程 理 .doc》由會員分享,可在線閱讀,更多相關《2019年高考數學真題分類匯編 17 坐標系與參數方程 理 .doc(3頁珍藏版)》請在裝配圖網上搜索。
2019年高考數學真題分類匯編 17 坐標系與參數方程 理 考點一 坐標系與極坐標 1.(xx安徽,4,5分)以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程是(t為參數),圓C的極坐標方程是ρ=4cos θ,則直線l被圓C截得的弦長為( ) A. B.2 C. D.2 答案 D 2.(xx湖南,11,5分)在平面直角坐標系中,傾斜角為的直線l與曲線C:(α為參數)交于A,B兩點,且|AB|=2,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,則直線l的極坐標方程是 . 答案 ρcos=1 3.(xx廣東,14,5分)(坐標系與參數方程選做題)在極坐標系中,曲線C1和C2的方程分別為ρsin2θ=cos θ和ρsin θ=1.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,則曲線C1和C2交點的直角坐標為 . 答案 (1,1) 4.(xx天津,13,5分)在以O為極點的極坐標系中,圓ρ=4sin θ和直線ρsin θ=a相交于A,B兩點.若△AOB是等邊三角形,則a的值為 . 答案 3 5.(xx重慶,15,5分)已知直線l的參數方程為(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ-4cos θ=0(ρ≥0,0≤θ<2π),則直線l與曲線C的公共點的極徑ρ= . 答案 6.(xx陜西,15C,5分)(坐標系與參數方程選做題)在極坐標系中,點到直線ρsin=1的距離是 . 答案 1 7.(xx遼寧,23,10分)選修4—4:坐標系與參數方程 將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C. (1)寫出C的參數方程; (2)設直線l:2x+y-2=0與C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程. 解析 (1)設(x1,y1)為圓上的點,在已知變換下變?yōu)镃上點(x,y),依題意,得 由+=1得x2+=1,即曲線C的方程為x2+=1. 故C的參數方程為(t為參數). (2)由解得或 不妨設P1(1,0),P2(0,2),則線段P1P2的中點坐標為,所求直線斜率為k=,于是所求直線方程為y-1=, 化為極坐標方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=. 考點二 參數方程 8.(xx北京,3,5分)曲線(θ為參數)的對稱中心( ) A.在直線y=2x上 B.在直線y=-2x上 C.在直線y=x-1上 D.在直線y=x+1上 答案 B 9.(xx江西,11(2),5分)(坐標系與參數方程選做題)若以直角坐標系的原點為極點,x軸的非負半軸為極軸建立極坐標系,則線段y=1-x(0≤x≤1)的極坐標方程為( ) A.ρ=,0≤θ≤ B.ρ=,0≤θ≤ C.ρ=cos θ+sin θ,0≤θ≤ D.ρ=cos θ+sin θ,0≤θ≤ 答案 A 10.(xx湖北,16,5分)選修4—4:坐標系與參數方程 已知曲線C1的參數方程是(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2,則C1與C2交點的直角坐標為 . 答案 (,1) 11.(xx課標Ⅰ,23,10分)選修4—4:坐標系與參數方程 已知曲線C:+=1,直線l:(t為參數). (1)寫出曲線C的參數方程,直線l的普通方程; (2)過曲線C上任意一點P作與l夾角為30的直線,交l于點A,求|PA|的最大值與最小值. 解析 (1)曲線C的參數方程為(θ為參數). 直線l的普通方程為2x+y-6=0. (2)曲線C上任意一點P(2cos θ,3sin θ)到l的距離為 d=|4cos θ+3sin θ-6|. 則|PA|==|5sin(θ+α)-6|, 其中α為銳角,且tan α=. 當sin(θ+α)=-1時,|PA|取得最大值,最大值為. 當sin(θ+α)=1時,|PA|取得最小值,最小值為. 12.(xx課標Ⅱ,23,10分)選修4—4:坐標系與參數方程 在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=2cos θ,θ∈. (1)求C的參數方程; (2)設點D在C上,C在D處的切線與直線l:y=x+2垂直,根據(1)中你得到的參數方程,確定D的坐標. 解析 (1)C的普通方程為(x-1)2+y2=1(0≤y≤1). 可得C的參數方程為(t為參數,0≤t≤π). (2)設D(1+cos t,sin t).由(1)知C是以G(1,0)為圓心,1為半徑的上半圓. 因為C在點D處的切線與l垂直,所以直線GD與l的斜率相同,tan t=,t=. 故D的直角坐標為,即. 13.(xx江蘇,21C,10分)選修4—4:坐標系與參數方程 在平面直角坐標系xOy中,已知直線l的參數方程為(t為參數),直線l與拋物線y2=4x相交于A,B兩點,求線段AB的長. 解析 將直線l的參數方程代入拋物線方程y2=4x,得=4,解得t1=0,t2=-8. 所以AB=|t1-t2|=8. 14.(xx福建,21(2),7分)選修4—4:坐標系與參數方程 已知直線l的參數方程為(t為參數),圓C的參數方程為(θ為參數). (1)求直線l和圓C的普通方程; (2)若直線l與圓C有公共點,求實數a的取值范圍. 解析 (1)直線l的普通方程為2x-y-2a=0, 圓C的普通方程為x2+y2=16. (2)因為直線l與圓C有公共點,故圓C的圓心到直線l的距離d=≤4,解得-2≤a≤2.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019年高考數學真題分類匯編 17 坐標系與參數方程 2019 年高 數學 分類 匯編 坐標系 參數 方程
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-3280474.html