高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.2 對數(shù)函數(shù) 2.2.1 對數(shù)與對數(shù)運算 第2課時 對數(shù)的運算學(xué)案 新人教A版必修1

上傳人:仙*** 文檔編號:38061225 上傳時間:2021-11-05 格式:DOC 頁數(shù):5 大小:76KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.2 對數(shù)函數(shù) 2.2.1 對數(shù)與對數(shù)運算 第2課時 對數(shù)的運算學(xué)案 新人教A版必修1_第1頁
第1頁 / 共5頁
高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.2 對數(shù)函數(shù) 2.2.1 對數(shù)與對數(shù)運算 第2課時 對數(shù)的運算學(xué)案 新人教A版必修1_第2頁
第2頁 / 共5頁
高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.2 對數(shù)函數(shù) 2.2.1 對數(shù)與對數(shù)運算 第2課時 對數(shù)的運算學(xué)案 新人教A版必修1_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.2 對數(shù)函數(shù) 2.2.1 對數(shù)與對數(shù)運算 第2課時 對數(shù)的運算學(xué)案 新人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第二章 基本初等函數(shù)Ⅰ2.2 對數(shù)函數(shù) 2.2.1 對數(shù)與對數(shù)運算 第2課時 對數(shù)的運算學(xué)案 新人教A版必修1(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第2課時 對數(shù)的運算 學(xué)習(xí)目標(biāo):1.理解對數(shù)的運算性質(zhì).(重點)2.能用換底公式將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù).(難點)3.會運用運算性質(zhì)進(jìn)行一些簡單的化簡與證明.(易混點) [自 主 預(yù) 習(xí)探 新 知] 1.對數(shù)的運算性質(zhì) 如果a>0,且a≠1,M>0,N>0,那么: (1)loga(MN)=logaM+logaN; (2)loga=logaM-logaN; (3)logaMn=nlogaM(n∈R). 思考:當(dāng)M>0,N>0時,loga(M+N)=logaM+logaN,loga(MN)=logaMlogaN是否成立? [提示] 不一定. 2.對數(shù)的換底公式

2、若a>0且a≠1;c>0且c≠1;b>0, 則有l(wèi)ogab=. [基礎(chǔ)自測] 1.思考辨析 (1)積、商的對數(shù)可以化為對數(shù)的和、差.(  ) (2)loga(xy)=logaxlogay.(  ) (3)log2(-3)2=2log2(-3).(  ) [答案] (1)√ (2) (3) 2.計算log84+log82等于(  ) A.log86       B.8 C.6 D.1 D [log84+log82=log88=1.] 3.計算log510-log52等于(  ) 【導(dǎo)學(xué)號:37102270】 A.log58 B.lg 5 C.1 D.2

3、 C [log510-log52=log55=1.] 4.log23log32=________. 1 [log23log32==1.] [合 作 探 究攻 重 難] 對數(shù)運算性質(zhì)的應(yīng)用  計算下列各式的值: (1)lg -lg +lg ; (2)lg 52+lg 8+lg 5lg 20+(lg 2)2; (3). 【導(dǎo)學(xué)號:37102271】 [解] (1)原式=(5lg 2-2lg 7)-lg 2+(2lg 7+lg 5) =lg 2-lg 7-2lg 2+lg 7+lg 5 =lg 2+lg 5 =(lg 2+lg 5) =lg 10 =. (

4、2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 5+lg 2)2 =2+(lg 10)2=2+1=3. (3)原式= = = =. [規(guī)律方法] 1.利用對數(shù)性質(zhì)求值的解題關(guān)鍵是化異為同,先使各項底數(shù)相同,再找真數(shù)間的聯(lián)系. 2.對于復(fù)雜的運算式,可先化簡再計算;化簡問題的常用方法:①“拆”:將積(商)的對數(shù)拆成兩對數(shù)之和(差);②“收”:將同底對數(shù)的和(差)收成積(商)的對數(shù). [跟蹤訓(xùn)練] 1.求下列各式的值: (1)lg25+lg 2lg 50; (2)lg 8+lg25+lg 2lg 50+lg

5、 25. [解] (1)原式=lg25+(1-lg 5)(1+lg 5)=lg25+1-lg25=1. (2)lg 8+lg25+lg 2lg 50+lg 25=2lg 2+lg25+lg 2(1+lg 5)+2lg 5 =2(lg 2+lg 5)+lg2 5+lg 2+lg 2lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3. 對數(shù)的換底公式  計算: (1)lg 20+log10025; (2)(log2125+log425+log85)(log1258+log254+log52). 【導(dǎo)學(xué)號:37102272】 [解] (

6、1)lg 20+log10025=1+lg 2+=1+lg 2+lg 5=2. (2)(log2125+log425+log85)(log1258+log254+log52)=(log253+log2252+log235)(log5323+log5222+log52)=log25(1+1+1)log52=3=13. [跟蹤訓(xùn)練] 2.求值: (1)log23log35log516; (2)(log32+log92)(log43+log83). [解] (1)原式====4. (2)原式= ===. 對數(shù)運算性質(zhì)的綜合應(yīng)用 [探究問題] 1.若2a=3b,則a,

7、b間存在怎樣的等量關(guān)系? 提示:設(shè)2a=3b=t,則a=log2t,b=log3t,∴=log23. 2.若log23=a,log25=b,你能用a,b表示log415嗎? 提示:log415===.  已知3a=5b=c,且+=2,求c的值. 【導(dǎo)學(xué)號:37102273】 思路探究: [解] ∵3a=5b=c,∴a=log3c,b=log5c, ∴=logc3,=logc5, ∴+=logc15. 由logc15=2得c2=15,即c=. 母題探究:1.把本例條件變?yōu)椤?a=5b=15”,求+的值. [解] ∵3a=5b=15, ∴a=log315,b=log51

8、5, ∴+=log153+log155=log1515=1. 2.若本例條件改為“若a,b是正數(shù),且3a=5b=c”,比較3a與5b的大?。? [解] ∵3a=5b=c,∴a=log3c,b=log5c, ∴3a-5b=3log3c-5log5c =-= =<0, ∴3a<5b. [規(guī)律方法] 應(yīng)用換底公式應(yīng)注意的兩個方面 (1)化成同底的對數(shù)時,要注意換底公式的正用、逆用以及變形應(yīng)用. (2)題目中有指數(shù)式和對數(shù)式時,要注意將指數(shù)式與對數(shù)式統(tǒng)一成一種形式. [當(dāng) 堂 達(dá) 標(biāo)固 雙 基] 1.計算:log153-log62+log155-log63

9、=(  ) A.-2    B.0    C.1    D.2 B [原式=log15(35)-log6(23)=1-1=0.] 2.計算log92log43=(  ) 【導(dǎo)學(xué)號:37102274】 A.4 B.2 C. D. D [log92log43==.] 3.設(shè)10a=2,lg 3=b,則log26=(  ) A. B. C.a(chǎn)b D.a(chǎn)+b B [∵10a=2,∴l(xiāng)g 2=a, ∴l(xiāng)og26===.] 4.log816=________.  [log816=log2324=.] 5.計算:(1)log535-2log5+log57-log51.

10、8; (2)log2+log212-log242-1. 【導(dǎo)學(xué)號:37102275】 [解] (1)原式=log5(57)-2(log57-log53)+log57-log5=log55+log57-2log57+2log53+log57-2log53+log55=2. (2)原式=log2+log212-log2-log22 =log2=log2 =log22=-. 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!