《【北師大版數(shù)學(xué)】步步高大一輪復(fù)習(xí)練習(xí):2.8 函數(shù)與方程》由會員分享,可在線閱讀,更多相關(guān)《【北師大版數(shù)學(xué)】步步高大一輪復(fù)習(xí)練習(xí):2.8 函數(shù)與方程(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2.8 函數(shù)與方程
(時(shí)間:45分鐘 滿分:100分)
一、選擇題(每小題7分,共35分)
1.在以下區(qū)間中,存在函數(shù)f(x)=x3+3x-3的零點(diǎn)的是 ( )
A.[-1,0] B.[1,2]
C.[0,1] D.[2,3]
2.方程2-x+x2=3的實(shí)數(shù)解的個(gè)數(shù)為 ( )
A.2 B.3 C.1 D.4
3.函數(shù)f(x)=的零點(diǎn)的個(gè)數(shù)是 ( )
A.0 B.1 C.2 D.3
4.方程|x2-2x|=a2+1 (a>0)的解的個(gè)數(shù)是
2、 ( )
A.1 B.2 C.3 D.4
5.(2010天津)函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是 ( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
二、填空題(每小題6分,共24分)
6.函數(shù)f(x)=3x-7+ln x的零點(diǎn)位于區(qū)間(n,n+1) (n∈N)內(nèi),則n=________.
7.已知函數(shù)f(x)=x2+(1-k)x-k的一個(gè)零點(diǎn)在(2,3)內(nèi),則實(shí)數(shù)k的取值范圍是________.
8.若函數(shù)f(x)=x2+ax+b的兩個(gè)零點(diǎn)是-2和3,則不等式af(-
3、2x)>0的解集是
________________.
9.若f(x)= 則函數(shù)g(x)=f(x)-x的零點(diǎn)為____________.
三、解答題(共41分)
10.(13分)關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.
11.(14分)已知函數(shù)f(x)=4x+m2x+1有且僅有一個(gè)零點(diǎn),求m的取值范圍,并求出該零點(diǎn).
12.(14分)(1)m為何值時(shí),f(x)=x2+2mx+3m+4.
①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;
(2)若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
答案
4、1.C 2.A 3.D 4.B 5.C
6.2 7.(2,3) 8. 9.1+或1
10.解 設(shè)f(x)=x2+(m-1)x+1,x∈[0,2],
①若f(x)=0在區(qū)間[0,2]上有一解,
∵f(0)=1>0,則應(yīng)有f(2)≤0,
又∵f(2)=22+(m-1)2+1,
∴m≤-.
②若f(x)=0在區(qū)間[0,2]上有兩解,則,
∴.
∴,∴-≤m≤-1,
由①②可知m≤-1.
11.解 即方程(2x)2+m2x+1=0僅有一個(gè)實(shí)根.
設(shè)2x=t (t>0),則t2+mt+1=0.
當(dāng)Δ=0,即m2-4=0,∴m=-2時(shí),t=1;
m=2時(shí),t=-1
5、不合題意,舍去,∴2x=1,x=0符合題意.
當(dāng)Δ>0,即m>2或m<-2時(shí),t2+mt+1=0有一正一負(fù)根,即t1t2<0,這與t1t2>0矛盾.
∴這種情況不可能.
綜上可知:m=-2時(shí),f(x)有唯一零點(diǎn),該零點(diǎn)為x=0.
12.解 (1)①f(x)=x2+2mx+3m+4有且僅有一個(gè)零點(diǎn)?方程f(x)=0有兩個(gè)相等實(shí)根?Δ
=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1.
②由題意,知
即
∴-5
6、4x-x2|,
h(x)=-a.
作出g(x)、h(x)的圖像.由圖像可知,
當(dāng)0<-a<4,即-4
7、)
A.0a>1 D.a(chǎn)>b>1
3.(2010天津)設(shè)a=log54,b=(log53)2,c=log45,則 ( )
A.a(chǎn)
8、 B.- C. D.2
二、填空題(每小題6分,共24分)
6.已知a= (a>0),則loga=________.
7.已知00,a≠1).
(1)求f(x)
9、的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)求使f(x)>0的x的取值范圍.
12.(14分)若函數(shù)y=lg(3-4x+x2)的定義域?yàn)镸.當(dāng)x∈M時(shí),求f(x)=2x+2-34x的最值
及相應(yīng)的x的值.
答案
1.D 2.D 3.D 4.C 5.C
6.3 7.m>n 8.(-∞,-1) 9.(-∞,-3]
10.解 (1)原式===1.
(2)原式=lg(2lg+lg 5)+
=lg(lg 2+lg 5)+|lg-1|
=lglg(25)+1-lg=1.
11.解 (1)∵f(x)=loga,需有>0,
即(1+x)(1-x)>0
10、,即(x+1)(x-1)<0,∴-10 (a>0,a≠1),
①當(dāng)00的x的取值范圍為(-1,0).
②當(dāng)a>1時(shí),可得>1,解得01時(shí),f(x)>0的x的取值范圍為(0,1).
綜上,使f(x)>0的x的取值范圍是:
a>1時(shí),x∈(0,1);00,解得x<1或x>3,∴M={x|x<1,或x>3},
f(x)=2x+2-34x=42x-3(2x)2.
令2x=t,∵x<1或x>3,
∴t>8或08或08時(shí),f(x)∈(-∞,-160),
當(dāng)2x=t=,即x=log2時(shí),
f(x)max=.
綜上可知:當(dāng)x=log2時(shí),f(x)取到最大值為,無最小值.
[來源于:星火益佰高考資源網(wǎng)()]