2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 文.doc
《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 文.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第2講 綜合大題部分 1. (2017高考全國卷Ⅰ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知△ABC的面積為. (1)求sin Bsin C; (2)若6cos Bcos C=1,a=3,求△ABC的周長(zhǎng). 解析:(1)由題設(shè)得acsin B=, 即csin B=. 由正弦定理得sin Csin B=. 故sin Bsin C=. (2)由題設(shè)及(1)得cos Bcos C-sin Bsin C=-, 即cos(B+C)=-. 所以B+C=,故A=. 由題意得bcsin A=,a=3,所以bc=8. 由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,由bc=8,得b+c=. 故△ABC的周長(zhǎng)為3+. 2.(2018高考全國卷Ⅰ)在平面四邊形ABCD中,∠ADC=90,∠A=45,AB=2,BD=5. (1)求cos∠ADB; (2)若DC=2,求BC. 解析:(1)在△ABD中,由正弦定理得=, 即=,所以sin∠ADB=. 由題設(shè)知,∠ADB<90, 所以cos∠ADB==. (2)由題設(shè)及(1)知,cos∠BDC=sin∠ADB=. 在△BCD中,由余弦定理得BC2=BD2+DC2-2BDDCcos∠BDC=25+8-252=25,所以BC=5. 3.(2017高考全國卷Ⅲ)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sin A+cos A=0,a=2,b=2. (1)求c; (2)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積. 解析:(1)由已知可得tan A=-,所以A=. 在△ABC中,由余弦定理得28=4+c2-4ccos , 即c2+2c-24=0. 解得c=4(負(fù)值舍去). (2)由題設(shè)可得∠CAD=, 所以∠BAD=∠BAC-∠CAD=. 故△ABD的面積與△ACD的面積的比值為 =1. 又△ABC的面積為42sin∠BAC=2, 所以△ABD的面積為. 1. 在△ABC中,B=,角A的平分線AD交BC于點(diǎn)D,設(shè)∠BAD=α,sin α=. (1)求sin C; (2)若=28,求AC的長(zhǎng). 解析:(1)因?yàn)棣痢?0,),sin α=, 所以cos α==, 則sin∠BAC=sin 2α=2sin αcos α=2=,所以cos∠BAC=cos 2α=2cos2α-1=2-1=,sin C=sin[π-(+2α)]=sin(+2α)=cos 2α+sin 2α=+=. (2)由正弦定理,得=, 即=,所以AB=BC. 因?yàn)椋?8,所以ABBC=28, 由以上兩式解得BC=4. 由=,得=,所以AC=5. 2. 如圖所示,△ABC中,三個(gè)內(nèi)角B,A,C成等差數(shù)列,且AC=10,BC=15. (1)求△ABC的面積; (2)已知平面直角坐標(biāo)系xOy中點(diǎn)D(10,0),若函數(shù)f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的圖象經(jīng)過A,C,D三點(diǎn),且A,D為f(x)的圖象與x軸相鄰的兩個(gè)交點(diǎn),求f(x)的解析式. 解析:(1)在△ABC中,由角B,A,C成等差數(shù)列, 得B+C=2A,又A+B+C=π, 所以A=.設(shè)角A,B,C的對(duì)邊分別為a,b,c, 由余弦定理可知a2=b2+c2-2bccos , 所以c2-10c-125=0,解得c=AB=5+5. 因?yàn)镃O=10sin =5, 所以S△ABC=(5+5)5=(3+). (2)因?yàn)锳O=10cos =5, 所以函數(shù)f(x)的最小正周期T=2(10+5)=30, 故ω=. 因?yàn)閒(-5)=Msin[(-5)+φ]=0, 所以sin(-+φ)=0, 所以-+φ=kπ,k∈Z. 因?yàn)閨φ|<,所以φ=. 因?yàn)閒(0)=Msin =5,所以M=10, 所以f(x)=10sin(x+). 3.已知函數(shù)f(x)=2sin xcos x-3sin2x-cos2x+2. (1)當(dāng)x∈[0,]時(shí),求f(x)的值域; (2)若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足=,=2+2cos(A+C),求f(B)的值. 解析:(1)∵f(x)=2sin xcos x-3sin2x-cos2x+2 =sin 2x-2sin2x+1 =sin 2x+cos 2x =2sin(2x+), 又∵x∈[0,],∴2x+∈[,], sin(2x+)∈[-,1], ∴f(x)∈[-1,2]. (2)由題意可得 sin[A+(A+C)]=2sin A+2sin Acos(A+C), ∴sin Acos(A+C)+cos Asin(A+C) =2sin A+2sin Acos(A+C), 化簡(jiǎn)可得sin C=2sin A, ∴由正弦定理可得c=2a.∵b=a, ∴由余弦定理可得 cos B===, ∵0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題4 三角函數(shù)、解三角形 第2講 綜合大題部分真題押題精練 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 三角函數(shù) 三角形 綜合 部分 押題 精練
鏈接地址:http://m.kudomayuko.com/p-3911472.html