《高中數(shù)學(xué)北師大版選修22教案:第5章 拓展資料:復(fù)數(shù)問題的六種簡求策略》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)北師大版選修22教案:第5章 拓展資料:復(fù)數(shù)問題的六種簡求策略(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
復(fù)數(shù)問題的六種簡求策略
復(fù)數(shù)是初等數(shù)學(xué)與高等數(shù)學(xué)的一個重要銜接點(diǎn),它涉及到高中數(shù)學(xué)的很多分支,是每年高考中必考的內(nèi)容,為幫助同學(xué)們掌握這部分內(nèi)容,本文介紹幾種簡求復(fù)數(shù)題的常用方法,供參考。
一、特殊值法
對于含有參數(shù)范圍的題目,可選定參數(shù)范圍內(nèi)一特值代入,進(jìn)行估算,可排除干擾支,確定應(yīng)選支。
例1.當(dāng)<m<1時,復(fù)數(shù)z=(3m-2)+(m-1)i在復(fù)平面上對應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
分析:由于<m<1,取m=,則z=i,對應(yīng)的點(diǎn)在第四象限,故選D。
二、運(yùn)用特殊等式
記牢一些常用的特殊等式,如(1±i)
2、2=±2i,(±)3=1等,有助于復(fù)數(shù)運(yùn)算題的快速解決。
例2.計算(1-i)6·()97
解:原式=[(1-i )2]3·()96·()
=(-2i)3·(-)3×32·()
=8i·()=-4-4i
三、運(yùn)用共軛復(fù)數(shù)的性質(zhì)
共軛復(fù)數(shù)的性質(zhì)很多,如z為實(shí)數(shù)z=,z為純復(fù)數(shù)z=-,z·=|z|2等,若能靈活運(yùn)用,可簡化解題。
例3.設(shè)復(fù)數(shù)z滿足|z|=2,求|z2-z+4|的最大值和最小值。
解析:由|z|=2,得|z|2=z·=4,則|z2-z+4|=|z2-z+z&
3、#183;|=|z(z-1+)|=2|(z -1+|,若設(shè)z=a+bi(-2≤a≤2,-2≤b≤2),則|z2-z+4|=2|a+bi-1+a-bi|=2|2a-1|。
∴當(dāng)a=時,|z2-z+4|min=0,當(dāng)a=-2時,|z2-z+4|max=10
四、兩邊同取模
如果一個復(fù)數(shù)等式中,一邊能夠表示成實(shí)部和虛部,采用兩邊取模后,可將虛數(shù)問題轉(zhuǎn)化為實(shí)數(shù)問題。
例4.設(shè)復(fù)數(shù)z滿足關(guān)系式z+||=2+ i,那么z等于( )
A.+i B.-i C. D.
分析:原關(guān)系式可化為z=2-||+i,又|z|=||且為實(shí)數(shù),兩邊取模得|z|=,解得|z|=,則z=2-+i=+
4、i,故應(yīng)選D。
五、運(yùn)用整體思想
有些復(fù)數(shù)問題,若從整體上去觀察、分析題設(shè)的結(jié)構(gòu)特征,充分利用復(fù)數(shù)的有關(guān)概念和性質(zhì),對問題進(jìn)行整體處理,可得妙解。
例5.求同時滿足下列條件的所有復(fù)數(shù)z①z +是實(shí)數(shù),且1<z+≤6,②z的實(shí)部與虛部均為整數(shù)。
解析:觀察給出式,可設(shè)μ=z+,則μ∈R,且1<μ≤6,整理得z2- μz+10=0,則△=μ2-40<0,由求根公式得z=±i由條件②知是整數(shù),則μ=2,或4或6,當(dāng)μ=2時,z=1±3i,當(dāng)μ=4時,z=2±i(不合題意,舍去),當(dāng)μ=6時,z=3±i故滿足條件的復(fù)數(shù)z=1±3i,或z=3±i。
六、活用復(fù)數(shù)的幾何意義
在深刻理解復(fù)數(shù)幾何意義的基礎(chǔ)上,將復(fù)數(shù)問題轉(zhuǎn)化為幾何問題,借助幾何圖形的直觀化可快速解題。
例6.已知z1、z2∈C,且|z1|=1,若z1+z2=2i,則|z1-z2|的最大值是( )
A.6 B.5 C.4 D.3
分析:由|z1|=1,且z1=2i-z2知|z2-2i|=1,根據(jù)模的幾何意義知z1、z2分別在單位圓及以2i為圓心的圓上,則z1、z2對應(yīng)的兩點(diǎn)間距離|z1-z2|的最大值為兩圓的連心線長加上兩圓的半徑長即|z1-z2| max =2+2=4,故選C。