《高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣1 集合與常用邏輯用語(yǔ)講學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣1 集合與常用邏輯用語(yǔ)講學(xué)案 理(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
回扣1 集合與常用邏輯用語(yǔ)
1.集合
(1)集合的運(yùn)算性質(zhì):①A∪B=A?B?A;②A∩B=B?B?A;③A?B??UA??UB.
(2)子集、真子集個(gè)數(shù)計(jì)算公式
對(duì)于含有n個(gè)元素的有限集合M,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為2n,2n-1,2n-1,2n-2.
(3)集合運(yùn)算中的常用方法
若已知的集合是不等式的解集,用數(shù)軸求解;若已知的集合是點(diǎn)集,用數(shù)形結(jié)合法求解;若已知的集合是抽象集合,用Venn圖求解.
2.四種命題及其相互關(guān)系
(1)
(2)互為逆否命題的兩命題同真同假.
3.含有邏輯聯(lián)結(jié)詞的命題的真假
(1)命題p∨q:若p,q中至
2、少有一個(gè)為真,則命題為真命題,簡(jiǎn)記為:一真則真.
(2)命題p∧q:若p,q中至少有一個(gè)為假,則命題為假命題,p,q同為真時(shí),命題才為真命題,簡(jiǎn)記為:一假則假,同真則真.
(3)命題綈p:與命題p真假相反.
4.全稱(chēng)命題、特稱(chēng)(存在性)命題及其否定
(1)全稱(chēng)命題p:?x∈M,p(x),其否定為特稱(chēng)(存在性)命題綈p:?x0∈M,綈p(x0).
(2)特稱(chēng)(存在性)命題p:?x0∈M,p(x0),其否定為全稱(chēng)命題綈p:?x∈M,綈p(x).
5.充分條件與必要條件的三種判定方法
(1)定義法:正、反方向推理,若p?q,則p是q的充分條件(或q是p的必要條件);若p?q,且q?p,
3、則p是q的充分不必要條件(或q是p的必要不充分條件).
(2)集合法:利用集合間的包含關(guān)系.例如,若A?B,則A是B的充分條件(B是A的必要條件);若A=B,則A是B的充要條件.
(3)等價(jià)法:將命題等價(jià)轉(zhuǎn)化為另一個(gè)便于判斷真假的命題.
1.描述法表示集合時(shí),一定要理解好集合的含義——抓住集合的代表元素.如{x|y=lgx}——函數(shù)的定義域;{y|y=lgx}——函數(shù)的值域;{(x,y)|y=lgx}——函數(shù)圖象上的點(diǎn)集.
2.易混淆0,?,{0}:0是一個(gè)實(shí)數(shù);?是一個(gè)集合,它含有0個(gè)元素;{0}是以0為元素的單元素集合,但是0??,而??{0}.
3.集合的元素具有確定性、無(wú)
4、序性和互異性,在解決有關(guān)集合的問(wèn)題時(shí),尤其要注意元素的互異性.
4.空集是任何集合的子集.由條件A?B,A∩B=A,A∪B=B求解集合A時(shí),務(wù)必分析研究A=?的情況.
5.區(qū)分命題的否定與否命題,已知命題為“若p,則q”,則該命題的否定為“若p,則綈q”,其否命題為“若綈p,則綈q”.
6.在對(duì)全稱(chēng)命題和特稱(chēng)(存在性)命題進(jìn)行否定時(shí),不要忽視對(duì)量詞的改變.
7.對(duì)于充分、必要條件問(wèn)題,首先要弄清誰(shuí)是條件,誰(shuí)是結(jié)論.
8.判斷命題的真假要先明確命題的構(gòu)成.由命題的真假求某個(gè)參數(shù)的取值范圍,還可以從集合的角度來(lái)思考,將問(wèn)題轉(zhuǎn)化為集合間的運(yùn)算.
1.設(shè)集合M={x∈Z|-3<x<2
5、},N={x∈Z|-1≤x≤3},則M∩N等于( )
A.{0,1} B.{-1,0,1,2}
C.{0,1,2} D.{-1,0,1}
答案 D
解析 ∵M(jìn)={x∈Z|-3<x<2}={-2,-1,0,1},
N={x∈Z|-1≤x≤3}={-1,0,1,2,3},
∴M∩N={-1,0,1},故選D.
2.已知集合A={x|x2-4x+3<0},B={y|y=2x-1,x≥0},則A∩B等于( )
A.? B.[0,1)∩(3,+∞)
C.A D.B
答案 C
解析 由題意,得集合A={x|1<x<3},集合B={y|y≥0},那么A∩B={x|1<x<3
6、}=A.
3.已知集合M={x|log2x<3},N={x|x=2n+1,n∈N},則M∩N等于( )
A.(0,8) B.{3,5,7}
C.{0,1,3,5,7} D.{1,3,5,7}
答案 D
解析 ∵M(jìn)={x|0<x<8},又N={x|x=2n+1,n∈N},
∴M∩N={1,3,5,7},故選D.
4.已知集合A={1,2,3,4,5},B={5,6,7},C={(x,y)|x∈A,y∈A,x+y∈B},則C中所含元素的個(gè)數(shù)為( )
A.5 B.6
C.12 D.13
答案 D
解析 若x=5∈A,y=1∈A,則x+y=5+1=6∈B,即點(diǎn)
7、(5,1)∈C;同理,(5,2)∈C,(4,1)∈C,(4,2)∈C,(4,3)∈C,(3,2)∈C,(3,3)∈C,(3,4)∈C,(2,3)∈C,(2,4)∈C,(2,5)∈C,(1,4)∈C,(1,5)∈C,所以C中所含元素的個(gè)數(shù)為13,故選D.
5.已知集合A={y|y=sin x,x∈R},集合B={x|y=lgx},則(?RA)∩B為( )
A.(-∞,-1)∪(1,+∞)
B.[-1,1]
C.(1,+∞)
D.[1,+∞)
答案 C
解析 因?yàn)锳={y|y=sin x,x∈R}=[-1,1],
B={x|y=lgx}=(0,+∞),
所以(?RA)∩
8、B=(1,+∞).
6.設(shè)有兩個(gè)命題,命題p:關(guān)于x的不等式(x-3)≥0的解集為{x|x≥3},命題q:若函數(shù)y=kx2-kx-8的值恒小于0,則-32<k<0,那么( )
A.“p且q”為真命題 B.“p或q”為真命題
C.“綈p”為真命題 D.“綈q”為假命題
答案 C
解析 不等式(x-3)≥0的解集為{x|x≥3或x=1},所以命題p為假命題.若函數(shù)y=kx2-kx-8的值恒小于0,則-32<k≤0,所以命題q也是假命題,所以“綈p”為真命題.
7.(2016天津)設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對(duì)任意的正整數(shù)n,a2n-1+a2n<0”的(
9、 )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件
答案 C
解析 設(shè)數(shù)列的首項(xiàng)為a1,則a2n-1+a2n=a1q2n-2+a1q2n-1=a1q2n-2(1+q)<0,即q<-1,
故q<0是q<-1的必要不充分條件.故選C.
8.設(shè)命題甲:ax2+2ax+1>0的解集是實(shí)數(shù)集R;命題乙:0
10、解得05},則M∪N等于( )
A.{x|-3-3}
D.{x|x<-3或x>5}
答案 C
11、
解析 在數(shù)軸上表示集合M,N,則M∪N={x|x<-5或x>-3},故選C.
11.下列四個(gè)結(jié)論:
①若x>0,則x>sin x恒成立;
②命題“若x-sin x=0,則x=0”的逆否命題為“若x≠0,則x-sin x≠0”;
③“命題p∧q為真”是“命題p∨q為真”的充分不必要條件;
④命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0<0”.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2
C.3 D.4
答案 C
解析 對(duì)于①,令y=x-sin x,則y′=1-cosx≥0,則函數(shù)y=x-sin x在R上單調(diào)遞增,則當(dāng)x>0時(shí),x-sin
12、x>0-0=0,即當(dāng)x>0時(shí),x>sin x恒成立,故①正確;
對(duì)于②,命題“若x-sin x=0,則x=0”的逆否命題為“若x≠0,則x-sin x≠0”,故②正確;
對(duì)于③,命題p∨q為真即p,q中至少有一個(gè)為真,p∧q為真即p,q都為真,可知“p∧q為真”是“p∨q為真”的充分不必要條件,故③正確;
對(duì)于④,命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”,故④錯(cuò)誤.
綜上,正確結(jié)論的個(gè)數(shù)為3,故選C.
12.設(shè)集合M=,N=,且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“長(zhǎng)度”,那么集合M∩N的“長(zhǎng)度”的最小值是
13、( )
A. B.
C. D.
答案 C
解析 由已知,可得即0≤m≤,
即≤n≤1,
當(dāng)集合M∩N的長(zhǎng)度取最小值時(shí),M與N應(yīng)分別在區(qū)間[0,1]的左右兩端.
取m的最小值0,n的最大值1,
可得M=,N=.
所以M∩N=∩=.
此時(shí)集合M∩N的“長(zhǎng)度”的最小值為-=.
故選C.
13.已知集合M=,若3∈M,5?M,則實(shí)數(shù)a的取值范圍是______________.
答案 ∪(9,25]
解析 ∵集合M=,
得(ax-5)(x2-a)<0,
當(dāng)a=0時(shí),顯然不成立,
當(dāng)a>0時(shí),原不等式可化為(x-)(x+)<0,
若<,只需滿(mǎn)足解得1≤a<;
若>
14、,只需滿(mǎn)足
解得9<a≤25,當(dāng)a<0時(shí),不符合條件.
綜上,a的取值范圍為∪(9,25].
14.若“?x∈,m≤tanx+1”為真命題,則實(shí)數(shù)m的最大值為_(kāi)_______.
答案 0
解析 令f(x)=tan x+1,則函數(shù)f(x)在上為增函數(shù),故f(x)的最小值為f=0,
∵?x∈,m≤tanx+1,
故m≤(tan x+1)min,
∴m≤0,故實(shí)數(shù)m的最大值為0.
15.若“m>a”是“函數(shù)f(x)=x+m-的圖象不過(guò)第三象限”的必要不充分條件,則實(shí)數(shù)a能取的最大整數(shù)為_(kāi)_______.
答案 -1
解析 f(0)=m+,
∵函數(shù)y=f(x)的圖象不過(guò)第三象限,
∴m+≥0,即m≥-,
又“m>a”是“m≥-”的必要不充分條件,
∴a<-,則實(shí)數(shù)a能取的最大整數(shù)為-1.
16.下列結(jié)論:
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”;
②“x>2”是“x2-3x+2>0”的充分不必要條件;
③若“命題p:?x∈R,x2+x+1≠0”,則“綈p:?x0∈R,x+x0+1=0”;
④若“p∨q”為真命題,則p,q均為真命題.
其中錯(cuò)誤結(jié)論的序號(hào)是______________.
答案?、?
解析 對(duì)于若“p∨q”為真命題,則p,q中至少有一個(gè)為真命題,所以④錯(cuò)誤.