高中數(shù)學 232雙曲線的幾何性質課件 蘇教版選修21

上傳人:沈*** 文檔編號:50141182 上傳時間:2022-01-19 格式:PPT 頁數(shù):20 大小:1.06MB
收藏 版權申訴 舉報 下載
高中數(shù)學 232雙曲線的幾何性質課件 蘇教版選修21_第1頁
第1頁 / 共20頁
高中數(shù)學 232雙曲線的幾何性質課件 蘇教版選修21_第2頁
第2頁 / 共20頁
高中數(shù)學 232雙曲線的幾何性質課件 蘇教版選修21_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 232雙曲線的幾何性質課件 蘇教版選修21》由會員分享,可在線閱讀,更多相關《高中數(shù)學 232雙曲線的幾何性質課件 蘇教版選修21(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 【課標要求】 1了解雙曲線的簡單幾何性質 2用雙曲線的性質求解有關問題 【核心掃描】 1探求雙曲線的簡單幾何性質(重點) 2用雙曲線的性質求解有關問題(難點)2.3.2雙曲線的幾何性質雙曲線的幾何性質 雙曲線的簡單幾何性質 雙曲線 1(a0,b0)的幾何性質自學導引自學導引(1)范圍:范圍:xa或或xa,yR,也就是說雙曲線上的點分,也就是說雙曲線上的點分布在直線布在直線_的兩側的兩側(2)對稱性:在雙曲線標準方程中,以對稱性:在雙曲線標準方程中,以x代代x,或以,或以y代代y,或以,或以x,y分別代分別代x,y,方程都不變,所以雙曲線關,方程都不變,所以雙曲線關于于x軸,軸,y軸和原點對稱

2、,因此坐標軸是雙曲線的對稱軸,軸和原點對稱,因此坐標軸是雙曲線的對稱軸,原點是雙曲線的對稱中心,又稱為雙曲線的中心原點是雙曲線的對稱中心,又稱為雙曲線的中心xa (3)頂點 雙曲線只有兩個頂點:A1(a,0),A2(a,0) 線段A1A2叫做雙曲線的實軸,實軸長為2a,a叫雙曲線的實半軸長 線段B1B2叫雙曲線的虛軸,虛軸長為2b,b叫雙曲線的虛半軸長 (4)漸近線:雙曲線 1(a0,b0)的漸近線方程是_,離心率與漸近線的斜率k之間的關系是_ _,并且e越大,漸近線就越_,雙曲線的開口就越_e2k2=1陡陡大大 雙曲線的漸近線方程名師點睛名師點睛1.(2)雙曲線確定時,漸近線唯一確定雙曲線確

3、定時,漸近線唯一確定(求法見求法見(1),漸近線確,漸近線確定時,雙曲線并不唯一確定定時,雙曲線并不唯一確定(3)若已知漸近線方程為若已知漸近線方程為mxny0,求雙曲線方程,雙曲,求雙曲線方程,雙曲線的焦點可能在線的焦點可能在x軸上,也可能在軸上,也可能在y軸上,可用下面的方法軸上,可用下面的方法來解決來解決 方法一:分兩種情況設出方程進行討論 方法二:依據(jù)漸近線方程,設出雙曲線方程m2x2n2y2(0),求出即可 雙曲線的離心率2題型一題型一由雙曲線方程求幾何性質由雙曲線方程求幾何性質 求雙曲線16y29x2144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程 思路探索 將已知方程整理

4、為標準方程,即可研究其性質【例例1】 規(guī)律方法 由雙曲線方程寫出它的幾何性質關鍵要把方程化為標準形式,并注意過點的位置 求以橢圓 1的兩個頂點為焦點,以橢圓的焦點為頂點的雙曲線方程,并求此雙曲線的實軸長和虛軸長、離心率及漸近線方程【變式變式1】 求滿足下列條件的雙曲線標準方程:題型題型二二共漸近線的雙曲線問題共漸近線的雙曲線問題【例例2】思路探索思路探索 已知兩漸近線方程為已知兩漸近線方程為AxBy0,則雙曲線方,則雙曲線方程可設為程可設為(AxBy)(AxBy)m(m0),這里,這里m是待定的常是待定的常數(shù)數(shù) 求與雙曲線x22y22有共同漸近線,且過點M(2,1)的雙曲線方程 解設所求雙曲線

5、方程為x22y2(0) 過點M(2,2), 222(2)2,即4. 所求雙曲線方程為x22y24,【變式變式2】 (14分)已知F1、F2是雙曲線的左、右焦點,P是雙曲線上一點,且F1PF260,SPF1F212 ,離心率為2,求該雙曲線的標準方程 審題指導 已知雙曲線的幾何性質,確定雙曲線的標準方程,常用待定系數(shù)法,首先要依據(jù)焦點的位置設出方程的形式,再由題設條件確定參數(shù)的值題型題型三三由雙曲線性質求方程由雙曲線性質求方程【例例3】 【題后反思】 當雙曲線的焦點位置不確定時,方程可能有兩種形式,此時應注意分類討論,以防止遺漏 已知雙曲線的左、右焦點分別為F1、F2,離心率為 且過點(4, ) (1)求雙曲線的標準方程; (2)直線x3與雙曲線交于M、N兩點,求證:F1MF2M.【變式變式3】 設雙曲線中心在原點,焦點在y軸上, 若點P(0,5)到雙曲線上的點的最短距離為2,求雙曲線方程誤區(qū)警示忽視雙曲線的范圍而出錯誤區(qū)警示忽視雙曲線的范圍而出錯【示示例例】 由雙曲線方程中的自變量取值范圍可知由雙曲線方程中的自變量取值范圍可知y2b,因此必須將,因此必須將b視為參數(shù),在求視為參數(shù),在求d2的最小值時進行的最小值時進行分類討論分類討論

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!