高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式課件 新人教B版選修45

上傳人:痛*** 文檔編號:52215232 上傳時間:2022-02-07 格式:PPT 頁數(shù):20 大?。?28.51KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式課件 新人教B版選修45_第1頁
第1頁 / 共20頁
高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式課件 新人教B版選修45_第2頁
第2頁 / 共20頁
高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式課件 新人教B版選修45_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式課件 新人教B版選修45》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 數(shù)學(xué)歸納法與貝努利不等式 3.2 用數(shù)學(xué)歸納法證明不等式貝努利不等式課件 新人教B版選修45(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、3 3.2 2用數(shù)學(xué)歸納法證明不等式用數(shù)學(xué)歸納法證明不等式,貝努利不貝努利不等式等式目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重

2、難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航1.會用數(shù)學(xué)歸納法證明簡單的不等式.2.會用數(shù)學(xué)歸納法證明貝努利不等式.3.了解貝努利不等式的應(yīng)用條件.目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUIT

3、ANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航1.用數(shù)學(xué)歸納法證明不等式在不等關(guān)系的證明中,有多種多樣的方法,其中數(shù)學(xué)歸納法是最常用的方法之一,在運用數(shù)學(xué)歸納法證不等式時,推導(dǎo)“k+1”成立時,比較法、分析法、綜合法、放縮法等方法常被靈活地應(yīng)用.【做一做1-1】 欲用數(shù)學(xué)歸納法

4、證明:對于足夠大的正整數(shù)n,總有2nn3,n0為驗證的第一個值,則()A.n0=1B.n0為大于1小于10的某個整數(shù)C.n010D.n0=2解析:n=1時,21;n=2時,48;n=3時,827;n=4時,1664;n=5時,32125;n=6時,64216;n=7時,128343;n=8時,256512;n=9時,5121 000.故選C.答案:C目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦Z

5、HISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航【做一做1-2】 用數(shù)學(xué)歸納法證明“ nN*,n1)”時,由n=k(k1)不等式成立推證n=k+1時,左邊應(yīng)增加的項數(shù)是()A.2k-1B.2k-1C.2kD

6、.2k+1解析:增加的項數(shù)為(2k+1-1)-(2k-1)=2k+1-2k=2k.答案:C目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJI

7、AO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航2.用數(shù)學(xué)歸納法證明貝努利不等式(1)定理1(貝努利不等式):設(shè)x-1,且x0,n為大于1的自然數(shù),則(1+x)n1+nx.(2)定理2:設(shè)為有理數(shù),x-1,若01,則(1+x)1+x;若1,則(1+x)1+x.當(dāng)且僅當(dāng)x=0時等號成立.名師點撥當(dāng)指數(shù)推廣到任意實數(shù)且x-1時,若01,則(1+x)1+x;若1,則(1+x)1+x.當(dāng)且僅當(dāng)x=0時等號成立.目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANX

8、I隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISH

9、ISHULI知識梳理目標(biāo)導(dǎo)航應(yīng)用數(shù)學(xué)歸納法證明不等式,從“n=k”到“n=k+1”證明不等式成立的技巧有哪些?剖析:在用數(shù)學(xué)歸納法證明不等式的問題中,從“n=k”到“n=k+1”的過渡,利用歸納假設(shè)是比較困難的一步,它不像用數(shù)學(xué)歸納法證明恒等式問題一樣,只需拼湊出所需要的結(jié)構(gòu)來,而證明不等式的第二步中,從“n=k”到“n=k+1”,只用拼湊的方法,有時也行不通,因為對不等式來說,它還涉及“放縮”的問題,它可能需通過“放大”或“縮小”的過程,才能利用上歸納假設(shè),因此,我們可以利用“比較法”“綜合法”“分析法”等來分析從“n=k”到“n=k+1”的變化,從中找到“放縮尺度”,準(zhǔn)確地拼湊出所需要的結(jié)

10、構(gòu).目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANG

11、LIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航題型一題型二題型三用數(shù)學(xué)歸納法證明數(shù)列型不等式 (1)求數(shù)列an的通項公式;(2)求證:對一切正整數(shù)n,不等式a1a2an12=1;當(dāng)n=2時,22=4=22;當(dāng)n=3時,23=852=25;當(dāng)n=6時,26=6462=36.故猜測當(dāng)n5(nN*)時,2nn2.下面用數(shù)學(xué)歸納法進(jìn)行證明:(1)當(dāng)n=5時,顯然成立.(2)假設(shè)當(dāng)n=k(k5,且kN*)時,不等式成立,即2kk2(k5),則當(dāng)n=k+1時,2k+1=22k2k2=k2+k2+2k+1-2k-1=(k+1)2+(k-1)2-2(k+1)2(

12、因為(k-1)22).目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例

13、透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航題型一題型二題型三反思利用數(shù)學(xué)歸納法比較大小,關(guān)鍵是先用不完全歸納法歸納出兩個量的大小關(guān)系,猜測出證明方向,再利用數(shù)學(xué)歸納法證明結(jié)論成立.目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練Z

14、HONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航題型一題型二題型三用數(shù)學(xué)歸納法證明探索型不等式 目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練Z

15、HONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航題型一題型二題型三(1)當(dāng)n=1時,顯然成立.(2)假設(shè)當(dāng)n=k(kN*,且k1)時,目標(biāo)導(dǎo)航DIANLITOUXI典例透

16、析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJU

17、JIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航題型一題型二題型三反思用數(shù)學(xué)歸納法解決探索型不等式的思路是:觀察歸納猜想證明,即先通過觀察部分項的特點進(jìn)行歸納,判斷并猜測出一般結(jié)論,然后用數(shù)學(xué)歸納法進(jìn)行證明.目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦Z

18、HISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航1 2 3 41下列選項中,不滿足12+23+34+n(n+1)3n2-3n+2的自然數(shù)n是()A.1B.1,2C.1,2,3 D.1,2,3,4解析:將n=1,2,3,4分別代入驗證即可.答案:C目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIA

19、O重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航1 2

20、3 4答案:C 目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析S

21、UITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航1 2 3 4目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理DIANLITOUXI典例透析SUITANGLIANXI隨堂演練ZHONGNANJUJIAO重難聚焦ZHISHISHULI知識梳理目標(biāo)導(dǎo)航1 2 3 4

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!