備考20142013高考數(shù)學(xué) 真題模擬新題分類匯編 立體幾何 文
《備考20142013高考數(shù)學(xué) 真題模擬新題分類匯編 立體幾何 文》由會員分享,可在線閱讀,更多相關(guān)《備考20142013高考數(shù)學(xué) 真題模擬新題分類匯編 立體幾何 文(44頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、立體幾何 G1 空間幾何體的結(jié)構(gòu) 8.G1,G6[2013·北京卷] 如圖1-2,在正方體ABCD-A1B1C1D1中,P為對角線BD1的三等分點,P到各頂點的距離的不同取值有( ) 圖1-2 A.3個 B.4個 C.5個 D.6個 8.B [解析] 設(shè)棱長為1,∵BD1=,∴BP=,D1P=.聯(lián)結(jié)AD1,B1D1,CD1,得△ABD1≌△CBD1≌△B1BD1, ∴∠ABD1=∠CBD1=∠B1BD1,且cos∠ABD1=, 聯(lián)結(jié)AP,PC,PB1,則有△ABP≌△CBP≌△B1BP, ∴AP=CP=B1P=,同理
2、DP=A1P=C1P=1, ∴P到各頂點的距離的不同取值有4個. 18.G1,G4,G5[2013·廣東卷] 如圖1-4(1),在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到如圖1-4(2)所示的三棱錐A-BCF,其中BC=. 圖1-4 (1)證明:DE∥平面BCF; (2)證明:CF⊥平面ABF; (3)當(dāng)AD=時,求三棱錐F-DEG的體積. 18.解: G2 空間幾何體的三視圖和直觀圖 10.G2,G7[2013·北京卷] 某四棱錐的
3、三視圖如圖1-3所示,該四棱錐的體積為________. 圖1-3 10.3 [解析] 正視圖的長為3,側(cè)視圖的長為3,因此,該四棱錐底面是邊長為3的正方形,且高為1,因此V=×(3×3)×1=3. 18.G2,G4[2013·福建卷] 如圖1-3,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°. (1)當(dāng)正視方向與向量的方向相同時,畫出四棱錐P-ABCD的正視圖(要求標(biāo)出尺寸,并寫出演算過程); (2)若M為PA的中點,求證:DM∥平面PBC; (3)求三棱錐D-PBC的體積. 圖1-3 18
4、.解:(1)在梯形ABCD中,過點C作CE⊥AB,垂足為E. 由已知得,四邊形ADCE為矩形,AE=CD=3, 在Rt△BEC中,由BC=5,CE=4,依勾股定理得BE=3,從而AB=6. 又由PD⊥平面ABCD得,PD⊥AD. 從而在Rt△PDA中,由AD=4,∠PAD=60°,得PD=4 . 正視圖如圖所示. (2)方法一:取PB中點N,聯(lián)結(jié)MN,CN.在△PAB中,∵M(jìn)是PA中點,∴MN∥AB,MN=AB=3. 又CD∥AB,CD=3,∴MN∥CD,MN=CD, ∴四邊形MNCD為平行四邊形,∴DM∥CN. 又DM平面PBC,CN平面PBC, ∴DM∥平面
5、PBC. 方法二:取AB的中點E,聯(lián)結(jié)ME,DE. 在梯形ABCD中,BE∥CD,且BE=CD, ∴四邊形BCDE為平行四邊形, ∴DE∥BC.又DE平面PBC,BC平面PBC, ∴DE∥平面PBC. 又在△PAB中,ME∥PB, ME平面PBC,PB平面PBC,∴ME∥平面PBC. 又DE∩ME=E,∴平面DME∥平面PBC. 又DM平面DME,∴DM∥平面PBC. (3)VD-PBC=VP-DBC=S△DBC·PD, 又S△DBC=6,PD=4 ,所以VD-PBC=8 . 6.G2[2013·廣東卷] 某三棱錐的三視圖如圖1-2所示,則該三棱錐的體
6、積是( ) 圖1-2 A. B. C. D.1 6.B [解析] 由三視圖得三棱錐的高是2,底面是一個腰為1的等腰直角三角形,故體積是××1×1×2=,選B. 5.G2[2013·廣東卷] 執(zhí)行如圖1-1所示的程序框圖,若輸入n的值為3,則輸出s的值是( ) 圖1-1 A.1 B.2 C.4 D.7 5.C [解析] 1≤3,s=1+0=1,i=2;2≤3,s=1+1=2,i=3;s=2+2=4,i=4;4>3,故輸出s=4,選C. 7.G2[2013·湖南卷] 已知正方體的棱長為1,其俯視圖是一個面積為1的正方形,側(cè)視圖是一個面積為的矩形,則該
7、正方體的正視圖的面積等于( ) A. B.1 C.D. 7.D [解析] 由題可知,其俯視圖恰好是正方形,而側(cè)視圖和正視圖則應(yīng)該都是正方體的對角面,故面積為,選D. 8.G2[2013·江西卷] 一幾何體的三視圖如圖1-2所示,則該幾何體的體積為( ) 圖1-2 A.200+9π B.200+18π C.140+9π D.140+18π 8.A [解析] 該幾何體上面是半圓柱,下面是長方體,半圓柱體積為π·32·2=9π,長方體體積為10×5×4=200.故選A. 13.G2[2013·遼寧卷] 某幾何體的三視圖如圖1-3所示,則該幾何體的體積是________
8、. 圖1-3 13.16π-16 [解析] 由三視圖可知該幾何體是一個圓柱里面挖去了一個長方體,所以該幾何體的體積為V=4π×4-16=16π-16. 9.G2[2013·新課標(biāo)全國卷Ⅱ] 一個四面體的頂點在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的正視圖時,以zOx平面為投影面,則得到的正視圖可以為( ) 圖1-3 9.A [解析] 在空間直角坐標(biāo)系O-xyz中畫出三棱錐,由已知可知三棱錐O-ABC為題中所描敘的四面體,而其在zOx平面上的投影為正方形EBDO,故選A. 圖1-4 4.
9、G2[2013·山東卷] 一個四棱錐的側(cè)棱長都相等,底面是正方形,其正(主)視圖如圖1-1所示,則該四棱錐側(cè)面積和體積分別是( ) 圖1-1 A.4 ,8 B.4 , C.4(+1), D.8,8 4.B [解析] 由正視圖知該幾何體的高為2,底面邊長為2,斜高為=,∴側(cè)面積=4××2×=4 ,體積為×2×2×2=. 12.G2[2013·陜西卷] 某幾何體的三視圖如圖1-2所示,則其表面積為________. 圖1-2 12.3π [解析] 由三視圖得該幾何體為半徑為1的半個球,則表面積為半球面+底面圓,代入數(shù)據(jù)計算為S=×4π×12+π×12=3π. 11
10、.G2[2013·新課標(biāo)全國卷Ⅰ] 某幾何體的三視圖如圖1-3所示,則該幾何體的體積為( ) 圖1-3 A.16+8π B.8+8π C.16+16π D.8+16π 11.A [解析] 該空間幾何體的下半部分是一個底面半徑為2,母線長為4的半圓柱,上半部分是一個底面邊長為2、高為4的正四棱柱.這個空間幾何體的體積是×π×4×4+2×2×4=16+8π. 5.G2[2013·浙江卷] 已知某幾何體的三視圖(單位: cm)如圖1-1所示,則該幾何體的體積是( ) 圖1-1 A.108 cm3 B.100 cm3 C.92 cm3 D.84 cm3 5.B
11、 [解析] 此直觀圖是由一個長方體挖去一個三棱錐而得,如圖所示其體積為3×6×6-××3×4×4=108-8=100(cm3).所以選擇B. 19.G2和G5[2013·重慶卷] 如圖1-4所示,四棱錐P-ABCD中,PA⊥底面ABCD,PA=2 ,BC=CD=2,∠ACB=∠ACD=. (1)求證:BD⊥平面PAC; (2)若側(cè)棱PC上的點F滿足PF=7FC,求三棱錐P-BDF的體積. 圖1-4 19.解:(1)證明:因為BC=CD,即△BCD為等腰三角形,又∠ACB=∠ACD,故BD⊥AC. 因為PA⊥底面ABCD,所以PA⊥BD,從而BD與平面PAC內(nèi)兩條相交直線PA,A
12、C都垂直,所以BD⊥平面PAC. (2)三棱錐P-BCD的底面BCD的面積S△BCD=BC·CD·sin∠BCD=·2·2·sin=. 由PA⊥底面ABCD,得 VP-BCD=·S△BCD·PA=××2 =2. 由PF=7FC,得三棱錐F-BCD的高為PA,故VF-BCD=·S△BCD·PA=×××2 =, 所以VP-BDF=VP-BCD-VF-BCD=2-=. 8.G2和G7[2013·重慶卷] 某幾何體的三視圖如圖1-3所示,則該幾何體的表面積為( ) 圖1-3 A.180 B.200 C.220 D.240 8.D [解析] 該幾何體為直四棱柱,其高為1
13、0,底面是上底為2,下底為8,高為4,其腰為5的等腰梯形,所以底面面積和為(2+8)×4×2=40.四個側(cè)面的面積和為(2+8+5×2)×10=200,所以該直四棱柱的表面積為S=40+200=240,故選D. G3 平面的基本性質(zhì)、空間兩條直線 G4 空間中的平行關(guān)系 17.G4,G5,G7[2013·北京卷] 如圖1-5,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是CD和PC的中點.求證: (1)PA⊥底面ABCD;
14、 (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. 圖1-5 17.證明:(1)因為平面PAD⊥底面ABCD,且PA垂直于這兩個平面的交線AD,所以PA⊥底面ABCD. (2)因為AB∥CD,CD=2AB,E為CD的中點, 所以AB∥DE,且AB=DE, 所以ABED為平行四邊形, 所以BE∥AD. 又因為BE平面PAD,AD平面PAD, 所以BE∥平面PAD. (3)因為AB⊥AD,而且ABED為平行四邊形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD, 所以PA⊥CD. 又因為AD∩PA=A,所以CD⊥平面PAD, 所以CD⊥
15、PD. 因為E和F分別是CD和PC的中點, 所以PD∥EF, 所以CD⊥EF, 所以CD⊥平面BEF, 所以平面BEF⊥平面PCD. 18.G2,G4[2013·福建卷] 如圖1-3,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°. (1)當(dāng)正視方向與向量的方向相同時,畫出四棱錐P-ABCD的正視圖(要求標(biāo)出尺寸,并寫出演算過程); (2)若M為PA的中點,求證:DM∥平面PBC; (3)求三棱錐D-PBC的體積. 圖1-3 18.解:(1)在梯形ABCD中,過點C作CE⊥AB,垂足為E. 由已
16、知得,四邊形ADCE為矩形,AE=CD=3, 在Rt△BEC中,由BC=5,CE=4,依勾股定理得BE=3,從而AB=6. 又由PD⊥平面ABCD得,PD⊥AD. 從而在Rt△PDA中,由AD=4,∠PAD=60°,得PD=4 . 正視圖如圖所示. (2)方法一:取PB中點N,聯(lián)結(jié)MN,CN.在△PAB中,∵M(jìn)是PA中點,∴MN∥AB,MN=AB=3. 又CD∥AB,CD=3,∴MN∥CD,MN=CD, ∴四邊形MNCD為平行四邊形,∴DM∥CN. 又DM平面PBC,CN平面PBC, ∴DM∥平面PBC. 方法二:取AB的中點E,聯(lián)結(jié)ME,DE. 在梯形ABC
17、D中,BE∥CD,且BE=CD, ∴四邊形BCDE為平行四邊形, ∴DE∥BC.又DE平面PBC,BC平面PBC, ∴DE∥平面PBC. 又在△PAB中,ME∥PB, ME平面PBC,PB平面PBC,∴ME∥平面PBC. 又DE∩ME=E,∴平面DME∥平面PBC. 又DM平面DME,∴DM∥平面PBC. (3)VD-PBC=VP-DBC=S△DBC·PD, 又S△DBC=6,PD=4 ,所以VD-PBC=8 . 18.G1,G4,G5[2013·廣東卷] 如圖1-4(1),在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,F(xiàn)是BC的中點,AF與D
18、E交于點G,將△ABF沿AF折起,得到如圖1-4(2)所示的三棱錐A-BCF,其中BC=. 圖1-4 (1)證明:DE∥平面BCF; (2)證明:CF⊥平面ABF; (3)當(dāng)AD=時,求三棱錐F-DEG的體積. 18.解: 8.G4、G5[2013·廣東卷] 設(shè)l為直線,α,β是兩個不同的平面,下列命題中正確的是( ) A.若l∥α,l∥β,則α∥β B.若l⊥α,l⊥β,則α∥β C.若l⊥α,l∥β,則α∥β D.若α⊥β,l∥α,則l⊥β 8.B [解析] 根據(jù)空間平行、垂直關(guān)系的判定和性質(zhì),易知選B. 16.G4,G5[2013·江蘇卷] 如圖1-2,
19、在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點. 求證:(1)平面EFG∥平面ABC; (2)BC⊥SA. 圖1-2 16.證明:(1)因為AS=AB,AF⊥SB,垂足為F,所以F是SB的中點.又因為E是SA的中點,所以EF∥AB. 因為EF平面ABC,AB平面ABC, 所以EF∥平面ABC. 同理EG∥平面ABC.又EF∩EG=E, 所以平面EFG∥平面ABC. (2)因為平面SAB⊥平面SBC,且交線為SB, 又AF平面SAB,AF⊥SB, 所以AF⊥平面SBC. 因為
20、BC平面SBC,所以AF⊥BC. 又因為AB⊥BC,AF∩AB=A,AF,AB平面SAB,所以BC⊥平面SAB. 因為SA平面SAB,所以BC⊥SA. 15.G4[2013·江西卷] 如圖1-5所示,正方體的底面與正四面體的底面在同一平面α上,且AB∥CD,則直線EF與正方體的六個面所在的平面相交的平面?zhèn)€數(shù)為________. 圖1-5 15.4 [解析] 直線EF與正方體左右兩個面平行,與其他四個面相交. 圖1-4 18.G4,G5[2013·遼寧卷] 如圖1-4,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點. (1)求證:BC⊥平面PAC; (2
21、)設(shè)Q為PA的中點,G為△AOC的重心,求證:QG∥平面PBC. 18.證明:(1)由AB是圓O的直徑,得AC⊥BC. 由PA⊥平面ABC,BC平面ABC,得PA⊥BC. 又PA∩AC=A,PA平面PAC,AC平面PAC, 所以BC⊥平面PAC. (2)聯(lián)結(jié)OG并延長交AC于M,聯(lián)結(jié)QM,QO, 由G為△AOC的重心,得M為AC中點, 由Q為PA中點,得QM∥PC. 又O為AB中點,得OM∥BC. 因為QM∩MO=M,QM平面QMO. MO平面QMO, BC∩PC=C,BC平面PBC,PC平面PBC, 所以平面QMO∥平面PBC. 因為QG平面QM
22、O, 所以QG∥平面PBC. 18.G4,G7,G11[2013·新課標(biāo)全國卷Ⅱ] 如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點. (1)證明:BC1∥平面A1CD; (2)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C-A1DE的體積. 圖1-7 18.解:(1)證明:聯(lián)結(jié)AC1交A1C于點F,則F為AC1中點.又D是AB中點,聯(lián)結(jié)DF,則BC1∥DF.因為DF平面A1CD,BC1平面A1CD,所以BC1∥平面A1CD. 圖1-8 (2)因為ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥A
23、B.又AA1∩AB=A,于是CD⊥平面ABB1A1. 由AA1=AC=CB=2,AB=2 得∠ACB=90°,CD=,A1D=,DE=,A1E=3, 故A1D2+DE2=A1E2,即DE⊥A1D. 所以VC-A1DE=××××=1. 19.G4,G5[2013·山東卷] 如圖1-5,四棱錐P—ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F(xiàn),G,M,N分別為PB,AB,BC,PD,PC的中點. (1)求證:CE∥平面PAD; (2)求證:平面EFG⊥平面EMN. 圖1-6 19.證明:(1)證法一:取PA的中點H,聯(lián)結(jié)EH,DH. 因為E為PB的中
24、點, 所以EH∥AB,EH=AB. 又AB∥CD,CD=AB, 所以EH∥CD,EH=CD. 因此四邊形DCEH是平行四邊形. 所以CE∥DH. 又DH平面PAD,CE平面PAD, 因此CE∥平面PAD. 證法二:聯(lián)結(jié)CF. 因為F為AB的中點, 所以AF=AB. 又CD=AB, 所以AF=CD. 又AF∥CD, 所以四邊形AFCD為平行四邊形. 因此CF∥AD. 又CF平面PAD, 所以CF∥平面PAD. 因為E,F(xiàn)分別為PB,AB的中點, 所以EF∥PA. 又EF平面PAD, 所以EF∥平面PAD. 因為CF∩EF=F, 故平面CE
25、F∥平面PAD. 又CE平面CEF, 所以CE∥平面PAD. (2)因為E,F(xiàn)分別為PB,AB的中點, 所以EF∥PA. 又AB⊥PA, 所以AB⊥EF. 同理可證AB⊥FG. 又EF∩FG=F,EF平面EFG,F(xiàn)G平面EFG, 因此AB⊥平面EFG. 又M,N分別為PD,PC的中點, 所以MN∥CD. 又AB∥CD, 所以MN∥AB, 因此MN⊥平面EFG. 又MN平面EMN, 所以平面EFG⊥平面EMN. 18.G4,G11[2013·陜西卷] 如圖1-5,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,
26、AB=AA1=. 圖1-5 (1)證明:平面A1BD∥平面CD1B1; (2)求三棱柱ABD-A1B1D1的體積. 18.解: (1)證明:由題設(shè)知,BB1瘙綊DD1, ∴四邊形BB1D1D是平行四邊形, ∴BD∥B1D1. 又BD平面CD1B1, ∴BD∥平面CD1B1. ∵A1D1瘙綊B1C1瘙綊BC, ∴四邊形A1BCD1是平行四邊形, ∴A1B∥D1C. 又A1B平面CD1B1, ∴A1B∥平面CD1B1. 又∵BD∩A1B=B, ∴平面A1BD∥平面CD1B1. (2)∵A1O⊥平面ABCD, ∴A1O是三棱柱ABD-A1B1D1的高.
27、 又∵AO=AC=1,AA1=, ∴A1O==1, 又∵S△ABD=××=1, ∴VABD-A1B1D1=S△ABD·A1O=1. 19.G4,G5,G7,G11[2013·四川卷] 圖1-8 如圖1-8,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD上異于端點的點. (1)在平面ABC內(nèi),試作出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1; (2)設(shè)(1)中的直線l交AC于點Q,求三棱錐A1-QC1D的體積.(錐體體積公式:V=Sh
28、,其中S為底面面積,h為高) 19.解:(1)如圖,在平面ABC內(nèi),過點P作直線l∥BC,因為l在平面A1BC外,BC在平面A1BC內(nèi),由直線與平面平行的判定定理可知,l∥平面A1BC. 由已知,AB=AC,D是BC的中點, 所以,BC⊥AD,則直線l⊥AD. 因此AA1⊥平面ABC,所以AA1⊥直線l. 又因為AD,AA1在平面ADD1A1內(nèi),且AD與AA1相交, 所以直線l⊥平面ADD1A1. (2)過D作DE⊥AC于E. 因為AA1⊥平面ABC,所以DE⊥AA1. 又因為AC,AA1在平面AA1C1C內(nèi),且AC與AA1相交, 所以DE⊥平面AA1C1C. 由AB
29、=AC=2,∠BAC=120°,有AD=1,∠DAC=60°, 所以在△ACD中,DE=AD=. 又S△A1QC1=A1C1·AA1=1,所以 VA1-QC1D=VD-A1QC1=DE·S△A1QC1=××1=. 因此三棱錐A1-QC1D的體積是. 17.G4,G5、G11[2013·天津卷] 如圖1-3所示,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長均相等,D,E,F(xiàn)分別為棱AB,BC,A1C1的中點. (1)證明EF∥平面A1CD; (2)證明平面A1CD⊥平面A1ABB1; (3)求直線BC與平面A1CD所成角的正弦值. 圖1-3 17
30、.解:(1)證明:如圖,在三棱柱ABC-A1B1C1中,AC∥A1C1,且AC=A1C1,聯(lián)結(jié)ED,在△ABC中,因為D,E分別為AB,BC的中點,所以DE=AC且DE∥AC,又因為F為A1C1的中點,可得A1F=DE,且A1F∥DE,即四邊形A1DEF為平行四邊形,所以EF∥DA1.又EF平面A1CD,DA1平面A1CD,所以,EF∥平面A1CD. (2)證明:由于底面ABC是正三角形,D為AB的中點,故CD⊥AB,又由于側(cè)棱AA1⊥底面ABC,CD平面ABC,所以A1A⊥CD,又A1A∩AB=A,因此CD⊥平面A1ABB1,而CD平面A1CD,所以平面A1CD⊥平面A1ABB
31、1. (3)在平面A1ABB1內(nèi),過點B作BG⊥A1D交直線A1D于點G,聯(lián)結(jié)CG,由于平面A1CD⊥平面A1ABB1,而直線A1D是平面A1CD與平面A1ABB1的交線,故BG⊥平面A1CD,由此得∠BCG為直線BC與平面A1CD所成的角. 設(shè)三棱柱各棱長為a,可得A1D=,由△A1AD∽△BGD,易得BG=.在Rt△BGC中,sin∠BCG==. 所以直線BC與平面A1CD所成角的正弦值為. 4.G4,G5[2013·浙江卷] 設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面( ) A.若m∥α,n∥α,則m∥n B.若m∥α,m∥β,則α∥β C.若m∥n,m⊥α,則n⊥
32、α D.若m∥α,α⊥β,則m⊥β 4.C [解析] 對于選項C,若m∥n,m⊥α,易得n⊥α.所以選擇C. G5 空間中的垂直關(guān)系 圖1-5 18.G5[2013·安徽卷] 如圖1-5,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (1)證明:PC⊥BD; (2)若E為PA的中點,求三棱錐P-BCE的體積. 18.解:(1)證明:聯(lián)結(jié)AC,交BD于O點,聯(lián)結(jié)PO. 因為底面ABCD是菱形,所以AC⊥BD,BO=DO. 由PB=PD知,PO⊥BD.再由PO∩AC=O
33、知,BD⊥面APC,又PC平面APC,因此BD⊥PC. (2)因為E是PA的中點,所以VP-BCE=VC-PEB= VC-PAB=VB-APC. 由PB=PD=AB=AD=2知,△ABD≌△PBD. 因為∠BAD=60°, 所以PO=AO=,AC=2,BO=1.又PA=,故PO2+AO2=PA2,即PO⊥AC. 故S△APC=PO·AC=3. 由(1)知,BO⊥面APC,因此VP-BCE=VB-APC=··S△APC·BO=. 17.G4,G5,G7[2013·北京卷] 如圖1-5,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,P
34、A⊥AD,E和F分別是CD和PC的中點.求證: (1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. 圖1-5 17.證明:(1)因為平面PAD⊥底面ABCD,且PA垂直于這兩個平面的交線AD,所以PA⊥底面ABCD. (2)因為AB∥CD,CD=2AB,E為CD的中點, 所以AB∥DE,且AB=DE, 所以ABED為平行四邊形, 所以BE∥AD. 又因為BE平面PAD,AD平面PAD, 所以BE∥平面PAD. (3)因為AB⊥AD,而且ABED為平行四邊形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD, 所
35、以PA⊥CD. 又因為AD∩PA=A,所以CD⊥平面PAD, 所以CD⊥PD. 因為E和F分別是CD和PC的中點, 所以PD∥EF, 所以CD⊥EF, 所以CD⊥平面BEF, 所以平面BEF⊥平面PCD. 19.G5、G11[2013·全國卷] 如圖1-3所示,四棱錐P—ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是邊長為2的等邊三角形. 圖1-3 (1)證明:PB⊥CD; (2)求點A到平面PCD的距離. 19.解:(1)證明:取BC的中點E,聯(lián)結(jié)DE,則四邊形ABED為正方形.過P作PO⊥平面ABCD,垂足為O.聯(lián)結(jié)OA,OB,OD
36、,OE.由△PAB和△PAD都是等邊三角形知PA=PB=PD, 所以O(shè)A=OB=OD,即點O為正方形ABED對角線的交點.故OE⊥BD,從而PB⊥OE.因為O是BD的中點,E是BC的中點,所以O(shè)E∥CD. 因此PB⊥CD. (2)取PD的中點F,聯(lián)結(jié)OF,則OF∥PB. 由(1)知,PB⊥CD,故OF⊥CD. 又OD=BD=,OP==, 故△POD為等腰三角形,因此OF⊥PD. 又PD∩CD=D,所以O(shè)F⊥平面PCD. 因為AE∥CD,CD平面PCD,AE平面PCD,所以AE∥平面PCD. 因此O到平面PCD的距離OF就是A到平面PCD的距離,而OF=PB=1, 所
37、以點A到平面PCD的距離為1. 18.G1,G4,G5[2013·廣東卷] 如圖1-4(1),在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到如圖1-4(2)所示的三棱錐A-BCF,其中BC=. 圖1-4 (1)證明:DE∥平面BCF; (2)證明:CF⊥平面ABF; (3)當(dāng)AD=時,求三棱錐F-DEG的體積. 18.解: 8.G4、G5[2013·廣東卷] 設(shè)l為直線,α,β是兩個不同的平面,下列命題中正確的是( ) A.若l∥α,l∥β,則α∥β B.若l⊥α,l⊥β,則α∥β
38、C.若l⊥α,l∥β,則α∥β D.若α⊥β,l∥α,則l⊥β 8.B [解析] 根據(jù)空間平行、垂直關(guān)系的判定和性質(zhì),易知選B. 16.G4,G5[2013·江蘇卷] 如圖1-2,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點. 求證:(1)平面EFG∥平面ABC; (2)BC⊥SA. 圖1-2 16.證明:(1)因為AS=AB,AF⊥SB,垂足為F,所以F是SB的中點.又因為E是SA的中點,所以EF∥AB. 因為EF平面ABC,AB平面ABC, 所以EF∥平面ABC. 同理EG
39、∥平面ABC.又EF∩EG=E, 所以平面EFG∥平面ABC. (2)因為平面SAB⊥平面SBC,且交線為SB, 又AF平面SAB,AF⊥SB, 所以AF⊥平面SBC. 因為BC平面SBC,所以AF⊥BC. 又因為AB⊥BC,AF∩AB=A,AF,AB平面SAB,所以BC⊥平面SAB. 因為SA平面SAB,所以BC⊥SA. 19.G5,G7[2013·江西卷] 如圖1-7所示,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E為CD上一點,DE=1,EC=3. (1)證明:BE⊥平面BB1C1C; (2)求點B1到平面EA
40、1C1的距離. 圖1-7 19.解:(1)證明:過B作CD的垂線交CD于F,則BF=AD=,EF=AB-DE=1,F(xiàn)C=2. 在Rt△BEF中,BE=. 在Rt△CFB中,BC=. 在△BEC中,因為BE2+BC2=9=EC2,故BE⊥BC. 由BB1⊥平面ABCD得BE⊥BB1. 所以BE⊥平面BB1C1C. (2)三棱錐E-A1B1C1的體積V=·AA1·S△A1B1C1=. 在Rt△A1D1C1中,A1C1==3 . 同理,EC1==3 ,A1E==2 . 故S△A1C1E=3 . 設(shè)點B1到平面EA1C1的距離為d,則三棱錐B1-A1C1E的體積 V=
41、·d·S△A1C1E=d, 從而d=,d=. 圖1-4 18.G4,G5[2013·遼寧卷] 如圖1-4,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點. (1)求證:BC⊥平面PAC; (2)設(shè)Q為PA的中點,G為△AOC的重心,求證:QG∥平面PBC. 18.證明:(1)由AB是圓O的直徑,得AC⊥BC. 由PA⊥平面ABC,BC平面ABC,得PA⊥BC. 又PA∩AC=A,PA平面PAC,AC平面PAC, 所以BC⊥平面PAC. (2)聯(lián)結(jié)OG并延長交AC于M,聯(lián)結(jié)QM,QO, 由G為△AOC的重心,得M為AC中點, 由Q為PA中點,得QM
42、∥PC. 又O為AB中點,得OM∥BC. 因為QM∩MO=M,QM平面QMO. MO平面QMO, BC∩PC=C,BC平面PBC,PC平面PBC, 所以平面QMO∥平面PBC. 因為QG平面QMO, 所以QG∥平面PBC. 19.G4,G5[2013·山東卷] 如圖1-5,四棱錐P—ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F(xiàn),G,M,N分別為PB,AB,BC,PD,PC的中點. (1)求證:CE∥平面PAD; (2)求證:平面EFG⊥平面EMN. 圖1-6 19.證明:(1)證法一:取PA的中點H,聯(lián)結(jié)EH,DH. 因為E為
43、PB的中點, 所以EH∥AB,EH=AB. 又AB∥CD,CD=AB, 所以EH∥CD,EH=CD. 因此四邊形DCEH是平行四邊形. 所以CE∥DH. 又DH平面PAD,CE平面PAD, 因此CE∥平面PAD. 證法二:聯(lián)結(jié)CF. 因為F為AB的中點, 所以AF=AB. 又CD=AB, 所以AF=CD. 又AF∥CD, 所以四邊形AFCD為平行四邊形. 因此CF∥AD. 又CF平面PAD, 所以CF∥平面PAD. 因為E,F(xiàn)分別為PB,AB的中點, 所以EF∥PA. 又EF平面PAD, 所以EF∥平面PAD. 因為CF∩EF=F, 故
44、平面CEF∥平面PAD. 又CE平面CEF, 所以CE∥平面PAD. (2)因為E,F(xiàn)分別為PB,AB的中點, 所以EF∥PA. 又AB⊥PA, 所以AB⊥EF. 同理可證AB⊥FG. 又EF∩FG=F,EF平面EFG,F(xiàn)G平面EFG, 因此AB⊥平面EFG. 又M,N分別為PD,PC的中點, 所以MN∥CD. 又AB∥CD, 所以MN∥AB, 因此MN⊥平面EFG. 又MN平面EMN, 所以平面EFG⊥平面EMN. 19.G4,G5,G7,G11[2013·四川卷] 圖1-8 如圖1-8,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面AB
45、C,AB=AC=2AA1=2,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD上異于端點的點. (1)在平面ABC內(nèi),試作出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1; (2)設(shè)(1)中的直線l交AC于點Q,求三棱錐A1-QC1D的體積.(錐體體積公式:V=Sh,其中S為底面面積,h為高) 19.解:(1)如圖,在平面ABC內(nèi),過點P作直線l∥BC,因為l在平面A1BC外,BC在平面A1BC內(nèi),由直線與平面平行的判定定理可知,l∥平面A1BC. 由已知,AB=AC,D是BC的中點, 所以,BC⊥AD,則直線l⊥AD. 因此
46、AA1⊥平面ABC,所以AA1⊥直線l. 又因為AD,AA1在平面ADD1A1內(nèi),且AD與AA1相交, 所以直線l⊥平面ADD1A1. (2)過D作DE⊥AC于E. 因為AA1⊥平面ABC,所以DE⊥AA1. 又因為AC,AA1在平面AA1C1C內(nèi),且AC與AA1相交, 所以DE⊥平面AA1C1C. 由AB=AC=2,∠BAC=120°,有AD=1,∠DAC=60°, 所以在△ACD中,DE=AD=. 又S△A1QC1=A1C1·AA1=1,所以 VA1-QC1D=VD-A1QC1=DE·S△A1QC1=××1=. 因此三棱錐A1-QC1D的體積是. 17.G4,G5、
47、G11[2013·天津卷] 如圖1-3所示,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長均相等,D,E,F(xiàn)分別為棱AB,BC,A1C1的中點. (1)證明EF∥平面A1CD; (2)證明平面A1CD⊥平面A1ABB1; (3)求直線BC與平面A1CD所成角的正弦值. 圖1-3 17.解:(1)證明:如圖,在三棱柱ABC-A1B1C1中,AC∥A1C1,且AC=A1C1,聯(lián)結(jié)ED,在△ABC中,因為D,E分別為AB,BC的中點,所以DE=AC且DE∥AC,又因為F為A1C1的中點,可得A1F=DE,且A1F∥DE,即四邊形A1DEF為平行四邊形,所以EF∥
48、DA1.又EF平面A1CD,DA1平面A1CD,所以,EF∥平面A1CD. (2)證明:由于底面ABC是正三角形,D為AB的中點,故CD⊥AB,又由于側(cè)棱AA1⊥底面ABC,CD平面ABC,所以A1A⊥CD,又A1A∩AB=A,因此CD⊥平面A1ABB1,而CD平面A1CD,所以平面A1CD⊥平面A1ABB1. (3)在平面A1ABB1內(nèi),過點B作BG⊥A1D交直線A1D于點G,聯(lián)結(jié)CG,由于平面A1CD⊥平面A1ABB1,而直線A1D是平面A1CD與平面A1ABB1的交線,故BG⊥平面A1CD,由此得∠BCG為直線BC與平面A1CD所成的角. 設(shè)三棱柱各棱長為a,可得A1D=,
49、由△A1AD∽△BGD,易得BG=.在Rt△BGC中,sin∠BCG==. 所以直線BC與平面A1CD所成角的正弦值為. 19.G5[2013·新課標(biāo)全國卷Ⅰ] 如圖1-5所示,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. (1)證明:AB⊥A1C; (2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的體積. 圖1-5 19.解:(1)取AB的中點O,聯(lián)結(jié)OC,OA1,A1B, 因為CA=CB,所以O(shè)C⊥AB. 由于AB=AA1,∠BAA1=60°,故△AA1B為等邊三角形,所以O(shè)A1⊥AB. 因為OC∩OA1=O,所以
50、AB⊥平面OA1C. 又A1C平面OA1C,故AB⊥A1C. (2)由題設(shè)知△ABC與△AA1B都是邊長為2的等邊三角形,所以O(shè)C=OA1=. 又A1C=,則A1C2=OC2+OA,故OA1⊥OC. 因為OC∩AB=O,所以O(shè)A1⊥平面ABC,OA1為三棱柱ABC-A1B1C1的高. 又△ABC的面積S△ABC=,故三棱柱ABC-A1B1C1的體積V=S△ABC·OA1=3. 4.G4,G5[2013·浙江卷] 設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面( ) A.若m∥α,n∥α,則m∥n B.若m∥α,m∥β,則α∥β C.若m∥n,m⊥α,則n⊥α D.若m
51、∥α,α⊥β,則m⊥β 4.C [解析] 對于選項C,若m∥n,m⊥α,易得n⊥α.所以選擇C. 19.G2和G5[2013·重慶卷] 如圖1-4所示,四棱錐P-ABCD中,PA⊥底面ABCD,PA=2 ,BC=CD=2,∠ACB=∠ACD=. (1)求證:BD⊥平面PAC; (2)若側(cè)棱PC上的點F滿足PF=7FC,求三棱錐P-BDF的體積. 圖1-4 19.解:(1)證明:因為BC=CD,即△BCD為等腰三角形,又∠ACB=∠ACD,故BD⊥AC. 因為PA⊥底面ABCD,所以PA⊥BD,從而BD與平面PAC內(nèi)兩條相交直線PA,AC都垂直,所以BD⊥平面PAC. (
52、2)三棱錐P-BCD的底面BCD的面積S△BCD=BC·CD·sin∠BCD=·2·2·sin=. 由PA⊥底面ABCD,得 VP-BCD=·S△BCD·PA=××2 =2. 由PF=7FC,得三棱錐F-BCD的高為PA,故VF-BCD=·S△BCD·PA=×××2 =, 所以VP-BDF=VP-BCD-VF-BCD=2-=. G6三垂線定理 8.G1,G6[2013·北京卷] 如圖1-2,在正方體ABCD-A1B1C1D1中,P為對角線BD1的三等分點,P到各頂點的距離的不同取值有( ) 圖1-2 A.3個 B.4個 C.5個 D.6個 8.B
53、[解析] 設(shè)棱長為1,∵BD1=,∴BP=,D1P=.聯(lián)結(jié)AD1,B1D1,CD1,得△ABD1≌△CBD1≌△B1BD1, ∴∠ABD1=∠CBD1=∠B1BD1,且cos∠ABD1=, 聯(lián)結(jié)AP,PC,PB1,則有△ABP≌△CBP≌△B1BP, ∴AP=CP=B1P=,同理DP=A1P=C1P=1, ∴P到各頂點的距離的不同取值有4個. G7 棱柱與棱錐 17.G4,G5,G7[2013·北京卷] 如圖1-5,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是C
54、D和PC的中點.求證: (1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. 圖1-5 17.證明:(1)因為平面PAD⊥底面ABCD,且PA垂直于這兩個平面的交線AD,所以PA⊥底面ABCD. (2)因為AB∥CD,CD=2AB,E為CD的中點, 所以AB∥DE,且AB=DE, 所以ABED為平行四邊形, 所以BE∥AD. 又因為BE平面PAD,AD平面PAD, 所以BE∥平面PAD. (3)因為AB⊥AD,而且ABED為平行四邊形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD, 所以PA⊥CD. 又因為
55、AD∩PA=A,所以CD⊥平面PAD, 所以CD⊥PD. 因為E和F分別是CD和PC的中點, 所以PD∥EF, 所以CD⊥EF, 所以CD⊥平面BEF, 所以平面BEF⊥平面PCD. 10.G2,G7[2013·北京卷] 某四棱錐的三視圖如圖1-3所示,該四棱錐的體積為________. 圖1-3 10.3 [解析] 正視圖的長為3,側(cè)視圖的長為3,因此,該四棱錐底面是邊長為3的正方形,且高為1,因此V=×(3×3)×1=3. 8.G7[2013·江蘇卷] 如圖1-1,在三棱柱A1B1C1-ABC中,D,E,F(xiàn)分別是AB,AC,AA1的中點,設(shè)三棱錐F-ADE的體積為V
56、1,三棱柱A1B1C1-ABC的體積為V2,則V1∶V2=________. 圖1-1 8.1∶24 [解析] 設(shè)三棱柱的底面積為S,高為h,則V2=Sh,又D,E,F(xiàn)分別為AB,AC,AA1的中點,所以S△AED=S,且三棱錐F-ADE的高為h,故V1=S△AED·h=·S·h=Sh,所以V1∶V2=1∶24. 19.G5,G7[2013·江西卷] 如圖1-7所示,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E為CD上一點,DE=1,EC=3. (1)證明:BE⊥平面BB1C1C; (2)求點B1到平面EA1C1的距離. 圖
57、1-7 19.解:(1)證明:過B作CD的垂線交CD于F,則BF=AD=,EF=AB-DE=1,F(xiàn)C=2. 在Rt△BEF中,BE=. 在Rt△CFB中,BC=. 在△BEC中,因為BE2+BC2=9=EC2,故BE⊥BC. 由BB1⊥平面ABCD得BE⊥BB1. 所以BE⊥平面BB1C1C. (2)三棱錐E-A1B1C1的體積V=·AA1·S△A1B1C1=. 在Rt△A1D1C1中,A1C1==3 . 同理,EC1==3 ,A1E==2 . 故S△A1C1E=3 . 設(shè)點B1到平面EA1C1的距離為d,則三棱錐B1-A1C1E的體積 V=·d·S△A1C1E=d
58、, 從而d=,d=. 18.G4,G7,G11[2013·新課標(biāo)全國卷Ⅱ] 如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點. (1)證明:BC1∥平面A1CD; (2)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C-A1DE的體積. 圖1-7 18.解:(1)證明:聯(lián)結(jié)AC1交A1C于點F,則F為AC1中點.又D是AB中點,聯(lián)結(jié)DF,則BC1∥DF.因為DF平面A1CD,BC1平面A1CD,所以BC1∥平面A1CD. 圖1-8 (2)因為ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又A
59、A1∩AB=A,于是CD⊥平面ABB1A1. 由AA1=AC=CB=2,AB=2 得∠ACB=90°,CD=,A1D=,DE=,A1E=3, 故A1D2+DE2=A1E2,即DE⊥A1D. 所以VC-A1DE=××××=1. 19.G4,G5,G7,G11[2013·四川卷] 圖1-8 如圖1-8,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD上異于端點的點. (1)在平面ABC內(nèi),試作出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
60、(2)設(shè)(1)中的直線l交AC于點Q,求三棱錐A1-QC1D的體積.(錐體體積公式:V=Sh,其中S為底面面積,h為高) 19.解:(1)如圖,在平面ABC內(nèi),過點P作直線l∥BC,因為l在平面A1BC外,BC在平面A1BC內(nèi),由直線與平面平行的判定定理可知,l∥平面A1BC. 由已知,AB=AC,D是BC的中點, 所以,BC⊥AD,則直線l⊥AD. 因此AA1⊥平面ABC,所以AA1⊥直線l. 又因為AD,AA1在平面ADD1A1內(nèi),且AD與AA1相交, 所以直線l⊥平面ADD1A1. (2)過D作DE⊥AC于E. 因為AA1⊥平面ABC,所以DE⊥AA1. 又因為AC
61、,AA1在平面AA1C1C內(nèi),且AC與AA1相交, 所以DE⊥平面AA1C1C. 由AB=AC=2,∠BAC=120°,有AD=1,∠DAC=60°, 所以在△ACD中,DE=AD=. 又S△A1QC1=A1C1·AA1=1,所以 VA1-QC1D=VD-A1QC1=DE·S△A1QC1=××1=. 因此三棱錐A1-QC1D的體積是. 8.G2和G7[2013·重慶卷] 某幾何體的三視圖如圖1-3所示,則該幾何體的表面積為( ) 圖1-3 A.180 B.200 C.220 D.240 8.D [解析] 該幾何體為直四棱柱,其高為10,底面是上底為2,下底為8,
62、高為4,其腰為5的等腰梯形,所以底面面積和為(2+8)×4×2=40.四個側(cè)面的面積和為(2+8+5×2)×10=200,所以該直四棱柱的表面積為S=40+200=240,故選D. G8 多面體與球 10.G8[2013·天津卷] 已知一個正方體的所有頂點在一個球面上,若球的體積為,則正方體的棱長為________. 10. [解析] 設(shè)正方體的棱長為a,則π=π,解之得a=. 15.G8[2013·新課標(biāo)全國卷Ⅱ] 已知正四棱錐O-ABCD的體積為,底面邊長為,則以O(shè)為球心,OA為半徑的球的表面積為________. 15.
63、24π [解析] 設(shè)O到底面的距離為h,則×3×h=h=,OA==,故球的表面積為4π×()2=24π. 16.G8[2013·湖北卷] 我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是________寸. (注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸) 16.3 [解析] 積水深度為盆深的一半,故此時積水部分的圓臺上底面直徑為二尺,圓臺的高為九寸,故此時積水的體積是π(102+62+10×6)×9=196×3π(立方寸),盆口的面積是π
64、×142=196π,所以平均降雨量是=3寸. 15.G8[2013·新課標(biāo)全國卷Ⅰ] 已知H是球O的直徑AB上一點,AH∶HB=1∶2,AB⊥平面α,H為垂足,α截球O所得截面的面積為π,則球O的表面積為________. 15. [解析] 截面為圓,由已知得該圓的半徑為1.設(shè)球的半徑為r,則AH=r,所以O(shè)H=r,所以r2+12=r2,r2=,所以球的表面積是4πr2=. G9 空間向量及運算 G10 空間向量解決線面位置關(guān)系 G11 空間有與距離的求法
65、 19.G5、G11[2013·全國卷] 如圖1-3所示,四棱錐P—ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是邊長為2的等邊三角形. 圖1-3 (1)證明:PB⊥CD; (2)求點A到平面PCD的距離. 19.解:(1)證明:取BC的中點E,聯(lián)結(jié)DE,則四邊形ABED為正方形.過P作PO⊥平面ABCD,垂足為O.聯(lián)結(jié)OA,OB,OD,OE.由△PAB和△PAD都是等邊三角形知PA=PB=PD, 所以O(shè)A=OB=OD,即點O為正方形ABED對角線的交點.故OE⊥BD,從而PB⊥OE.因為O是BD的中點,E是BC的中點,所以O(shè)E∥C
66、D. 因此PB⊥CD. (2)取PD的中點F,聯(lián)結(jié)OF,則OF∥PB. 由(1)知,PB⊥CD,故OF⊥CD. 又OD=BD=,OP==, 故△POD為等腰三角形,因此OF⊥PD. 又PD∩CD=D,所以O(shè)F⊥平面PCD. 因為AE∥CD,CD平面PCD,AE平面PCD,所以AE∥平面PCD. 因此O到平面PCD的距離OF就是A到平面PCD的距離,而OF=PB=1, 所以點A到平面PCD的距離為1. 11.G11[2013·全國卷] 已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( ) A. B. C. D. 11.A [解析] 如圖,聯(lián)結(jié)AC,交BD于點O.由于BO⊥OC,BO⊥CC1,可得BO⊥平面OCC1,從而平面OCC1⊥平面BDC1,過點C作OC1的垂線交OC1于點E,根據(jù)面面垂直的性質(zhì)定理可得CE⊥平面BDC1,∠CDE即為所求的線面角.設(shè)AB=2,則OC=,OC1==3,所以CE===,所以sin ∠CDE==. 22.G11[2013·江蘇卷] 如圖1-2所示,在直三棱柱A1
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)