《高中數(shù)學(xué)必修二《平面與平面垂直的判定》優(yōu)秀教學(xué)設(shè)計(jì)(共3頁(yè))》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)必修二《平面與平面垂直的判定》優(yōu)秀教學(xué)設(shè)計(jì)(共3頁(yè))(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-----傾情為你奉上
2.3.2平面與平垂直的判定
一、教學(xué)目標(biāo)
1、知識(shí)與技能
(1)使學(xué)生正確理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“兩個(gè)平面互相垂直”的概念;
(2)使學(xué)生掌握兩個(gè)平面垂直的判定定理及其簡(jiǎn)單的應(yīng)用;
(3)使學(xué)生理會(huì)“類(lèi)比歸納”思想在數(shù)學(xué)問(wèn)題解決上的作用。
2、過(guò)程與方法
(1)通過(guò)實(shí)例讓學(xué)生直觀感知“二面角”概念的形成過(guò)程;
(2)類(lèi)比已學(xué)知識(shí),歸納“二面角”的度量方法及兩個(gè)平面垂直的判定定理。
3、情態(tài)與價(jià)值
通過(guò)揭示概念的形成、發(fā)展和應(yīng)用過(guò)程,使學(xué)生理會(huì)教學(xué)存在于觀實(shí)生活周?chē)?,從中激發(fā)學(xué)生積極思維,培養(yǎng)學(xué)生的觀察
2、、分析、解決問(wèn)題能力。
二、學(xué)情分析
學(xué)生通過(guò)學(xué)習(xí)直線與直線的垂直,直線與平面的垂直,已經(jīng)初步掌握了線線垂直與線面垂直的判定。這為學(xué)生學(xué)習(xí)平面與平面的垂直判定打下了良好的基礎(chǔ)。但是,有一部分學(xué)生空間想象力和邏輯思維能力較差,在學(xué)習(xí)的過(guò)程中仍有一定的難度,而平面與平面的垂直關(guān)系是繼教材直線與直線的垂直、直線與平面的垂直之后的遷移與拓展。因此,在教學(xué)中,教師盡量通過(guò)多媒體輔助教學(xué),幫助學(xué)生提高空間想象能力,同時(shí),盡量讓學(xué)生多參與,培養(yǎng)自主探索能力。
三、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):平面與平面垂直的判定;
難點(diǎn):如何度量二面角的大小。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情景,揭示課題
問(wèn)題1:平面
3、幾何中“角”是怎樣定義的?
問(wèn)題2:在立體幾何中,“異面直線所成的角”、“直線和平面所成的角”又是怎樣定義的?它們有什么共同的特征?
以上問(wèn)題讓學(xué)生自由發(fā)言,教師再作小結(jié),并順勢(shì)拋出問(wèn)題:在生產(chǎn)實(shí)踐中,有許多問(wèn)題要涉及到兩個(gè)平面相交所成的角的情形,你能舉出這個(gè)問(wèn)題的一些例子嗎?如修水壩、發(fā)射人造衛(wèi)星等,而這樣的角有何特點(diǎn),該如何表示呢?下面我們共同來(lái)觀察、研探。
(二)研探新知
1、二面角的有關(guān)概念
老師展示一張紙面,并對(duì)折讓學(xué)生觀察其狀,然后引導(dǎo)學(xué)生用數(shù)學(xué)思維思考,并對(duì)以上問(wèn)題類(lèi)比,歸納出二面角的概念及記法表示(如下表所示)
角
二面角
圖形
4、 A
邊
頂點(diǎn) O 邊 B
A
梭 l β
B
α
定義
從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形
從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形
構(gòu)成
射線 — 點(diǎn)(頂點(diǎn))一 射線
半平面 一 線(棱)一 半平面
表示
∠AOB
二面角α-l-β或α-AB-β
2、二面角的度量
二面角定理地反映了兩個(gè)平面相交的位置關(guān)系,如我們常說(shuō)“把門(mén)開(kāi)大一些”,是指二面角大一些,那我們應(yīng)如何度量二兩角的大小呢?師生活動(dòng):師生共同做一個(gè)小實(shí)驗(yàn)(預(yù)先準(zhǔn)備好的二面角的模型)在其棱
5、上位取一點(diǎn)為頂點(diǎn),在兩個(gè)半平面內(nèi)各作一射線(如圖2.3-3),通過(guò)實(shí)驗(yàn)操作,研探二面角大小的度量方法——二面角的平面角。
教師特別指出:
(1)在表示二面角的平面角時(shí),要求“OA⊥L” ,“OB⊥L”;
(2)∠AOB的大小與點(diǎn)O在L上的位置無(wú)關(guān);(為什么?)
B
(3)當(dāng)二面角的平面角是直角時(shí),這兩個(gè)平
面的位置關(guān)系怎樣?
ɑ
l
O
A
承上啟下,引導(dǎo)學(xué)生觀察,類(lèi)比、自主探究, β
圖2.3-3
獲得兩個(gè)平面互相垂直的判定定理:
6、
一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直。
(三)應(yīng)用舉例,強(qiáng)化所學(xué)
例題(2個(gè)):題目見(jiàn)配套課件
做法:教師引導(dǎo)學(xué)生分析題意,先讓學(xué)生自己動(dòng)手推理證明,然后抽檢學(xué)生掌握情況,教師最后講評(píng)并板書(shū)證明過(guò)程。
(四)運(yùn)用反饋,深化鞏固
問(wèn)題:課本P.69的探究問(wèn)題
做法:學(xué)生思考(或分組討論),老師與學(xué)生對(duì)話完成。
課堂練習(xí)(3個(gè)小題,題目見(jiàn)配套課件)。
(五)小結(jié)歸納,整體認(rèn)識(shí)
(1)二面角以及平面角的有關(guān)概念;
(2)兩個(gè)平面垂直的判定定理的內(nèi)容,它與直線與平面垂直的判定定理有何關(guān)系?
(六)課后作業(yè):課本P73 習(xí)題 3,4,6,7
專(zhuān)心---專(zhuān)注---專(zhuān)業(yè)