《數(shù)學(xué) 25個(gè)必考點(diǎn) 專(zhuān)題13 數(shù)列的求和》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《數(shù)學(xué) 25個(gè)必考點(diǎn) 專(zhuān)題13 數(shù)列的求和(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、數(shù)列的求和數(shù)列高考數(shù)學(xué)25個(gè)必考點(diǎn) 專(zhuān)題復(fù)習(xí)策略指導(dǎo)1.并項(xiàng)并項(xiàng)求和法求和法2.分組分組求和法求和法3.倒序倒序相加法相加法4.錯(cuò)位錯(cuò)位相減法相減法5.裂項(xiàng)裂項(xiàng)相消法相消法數(shù)數(shù)列列求求和和的的常常用用方方法法例例 已知數(shù)列已知數(shù)列1,4,7,10,(1)n(3n2),求其前,求其前n項(xiàng)和項(xiàng)和Sn.解析解析S2ka2k1并項(xiàng)求和并項(xiàng)求和法法3k1 解析解析 分組求和分組求和法法).211n41211 ()41211 ()211 (1例:求例:求Sn11 ( )2112n21112(1)(1)(1)222nnS 21112(1 11)()222n 11(1)222112nn1122.2nn12(1
2、)2nn12(1).2n1( ),()(1)22( 5)( 4)(0)(5)(6).例例. .若若函函數(shù)數(shù)計(jì)計(jì)算算的的值值,并并求求xf xfnf nTfffff 111()(1)2222nnfnf n解解:221(221) 2nn 12112222nnn (6)(5)(1)( 4)( 5)Tfffff 2212,2T ( 5)( 4)(0)(5)(6)Tfffff 即即. .3 2T 2.2 倒序相加法倒序相加法例例 已知數(shù)列已知數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,且,且Sn2an2(nN*), 在數(shù)列在數(shù)列bn中,中,b11,點(diǎn),點(diǎn)P(bn,bn1)在直線(xiàn)在直線(xiàn)xy20上上 (1)求數(shù)列求
3、數(shù)列an,bn的通項(xiàng)公式;的通項(xiàng)公式; (2)記記Tna1b1a2b2anbn,求,求Tn.解析解析(1)點(diǎn)點(diǎn)P(bn,bn1)在直線(xiàn)在直線(xiàn)xy20上,上,bnbn120,即即bn1bn2,bn是等差數(shù)列,是等差數(shù)列,b11,bn2n1.an2nbn2n1解析解析(2)例例 已知數(shù)列已知數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,且,且Sn2an2(nN*), 在數(shù)列在數(shù)列bn中,中,b11,點(diǎn),點(diǎn)P(bn,bn1)在直線(xiàn)在直線(xiàn)xy20上上 (1)求數(shù)列求數(shù)列an,bn的通項(xiàng)公式;的通項(xiàng)公式; (2)記記Tna1b1a2b2anbn,求,求Tn.錯(cuò)位相減法錯(cuò)位相減法an2nbn2n1122323524(2n3)2n(2n1)2n1解析解析裂項(xiàng)相消法求和裂項(xiàng)相消法求和C解析解析10,裂項(xiàng)相消法求和裂項(xiàng)相消法求和解析解析裂項(xiàng)相消法求和裂項(xiàng)相消法求和常用裂項(xiàng)變形式常用裂項(xiàng)變形式解析解析(1)證明證明1.