2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 選考4系列 8.2 不等式選講課件 文.ppt
《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 選考4系列 8.2 不等式選講課件 文.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 選考4系列 8.2 不等式選講課件 文.ppt(25頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
8 2不等式選講 選修4 5 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 絕對(duì)值不等式的解法 思考 如何解絕對(duì)值不等式 例1已知函數(shù)f x x 1 x 2 1 求不等式f x 1的解集 2 若不等式f x x2 x m的解集非空 求m的取值范圍 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 題后反思絕對(duì)值不等式的求解方法 1 ax b c ax b c c 0 型不等式的解法 ax b c c ax b c ax b c ax b c或ax b c 然后根據(jù)a b的取值求解即可 2 x a x b c c 0 和 x a x b c c 0 型不等式的解法 利用絕對(duì)值不等式的幾何意義求解 體現(xiàn)數(shù)形結(jié)合思想 利用 零點(diǎn)分段法 求解 體現(xiàn)分類(lèi)討論思想 通過(guò)構(gòu)建函數(shù) 利用函數(shù)圖象求解 體現(xiàn)函數(shù)與方程思想 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 對(duì)點(diǎn)訓(xùn)練1 2018全國(guó) 文23 設(shè)函數(shù)f x 2x 1 x 1 1 畫(huà)出y f x 的圖象 2 當(dāng)x 0 時(shí) f x ax b 求a b的最小值 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 y f x 的圖象如圖所示 2 由 1 知 y f x 的圖象與y軸交點(diǎn)的縱坐標(biāo)為2 且各部分所在直線(xiàn)斜率的最大值為3 故當(dāng)且僅當(dāng)a 3且b 2時(shí) f x ax b在 0 上成立 因此a b的最小值為5 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 絕對(duì)值不等式的參數(shù)范圍問(wèn)題 思考 解決絕對(duì)值不等式的參數(shù)范圍問(wèn)題的常用方法有哪些 例2已知函數(shù)f x 2x a a 1 當(dāng)a 2時(shí) 求不等式f x 6的解集 2 設(shè)函數(shù)g x 2x 1 當(dāng)x R時(shí) f x g x 3 求a的取值范圍 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 解 1 當(dāng)a 2時(shí) f x 2x 2 2 解不等式 2x 2 2 6得 1 x 3 因此f x 6的解集為 x 1 x 3 2 當(dāng)x R時(shí) f x g x 2x a a 1 2x 2x a 1 2x a 1 a a 當(dāng)x 時(shí)等號(hào)成立 所以當(dāng)x R時(shí) f x g x 3等價(jià)于 1 a a 3 分類(lèi)討論 當(dāng)a 1時(shí) 等價(jià)于1 a a 3 無(wú)解 當(dāng)a 1時(shí) 等價(jià)于a 1 a 3 解得a 2 所以a的取值范圍是 2 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 題后反思1 解決絕對(duì)值不等式的參數(shù)范圍問(wèn)題常用以下兩種方法 1 將參數(shù)分類(lèi)討論 將其轉(zhuǎn)化為分段函數(shù)解決 2 借助于絕對(duì)值的幾何意義 先求出含參數(shù)的絕對(duì)值表達(dá)式的最值或取值范圍 再根據(jù)題目要求 求解參數(shù)的取值范圍 2 解答此類(lèi)問(wèn)題應(yīng)熟記以下轉(zhuǎn)化 f x a恒成立 f x min a f x a有解 f x max a f x a無(wú)解 f x max a f x a無(wú)解 f x min a 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 對(duì)點(diǎn)訓(xùn)練2已知f x ax 1 a R 不等式f x 5的解集為 x x 2或x 3 1 求a的值 2 若不等式f x f k在R上有解 求k的取值范圍 解 1 由 ax 1 5 得ax 4或ax5的解集為 x x 2或x0時(shí) 解得x 或x 則a 2 當(dāng)a 0時(shí) 經(jīng)驗(yàn)證不合題意 綜上 a 2 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 不等式的證明 思考 不等式證明的常用方法有哪些 例3已知a 0 b 0 a3 b3 2 證明 1 a b a5 b5 4 2 a b 2 證明 1 a b a5 b5 a6 ab5 a5b b6 a3 b3 2 2a3b3 ab a4 b4 4 ab a2 b2 2 4 2 因?yàn)?a b 3 a3 3a2b 3ab2 b3 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 題后反思不等式證明的常用方法是 比較法 綜合法與分析法 其中運(yùn)用綜合法證明不等式時(shí) 主要是運(yùn)用基本不等式證明 與絕對(duì)值有關(guān)的不等式證明常用絕對(duì)值三角不等式 證明過(guò)程中一方面要注意不等式成立的條件 另一方面要善于對(duì)式子進(jìn)行恰當(dāng)?shù)霓D(zhuǎn)化 變形 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 對(duì)點(diǎn)訓(xùn)練3 1 設(shè)a b 0 證明 3a3 2b3 3a2b 2ab2 2 證明 a6 8b6 2a2b2c2 3 若a b c為正實(shí)數(shù) 證明 a2 4b2 9c2 2ab 3ac 6bc 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 不等式的綜合應(yīng)用 思考 用什么定理或公式解決多變量代數(shù)式的最值問(wèn)題 例4已知a b為正實(shí)數(shù) 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 題后反思基本不等式在解決多變量代數(shù)式的最值問(wèn)題中有著重要的應(yīng)用 運(yùn)用基本不等式時(shí)應(yīng)注意其條件 一正 二定 三相等 命題熱點(diǎn)一 命題熱點(diǎn)二 命題熱點(diǎn)三 命題熱點(diǎn)四 對(duì)點(diǎn)訓(xùn)練4設(shè)a 0 b 0 且a b 證明 1 a b 2 2 a2 a 2與b2 b 2不可能同時(shí)成立 即a b 2 2 假設(shè)a2 a0得0 a 1 同理 0 b 1 從而ab 1 這與ab 1矛盾 故a2 a 2與b2 b 2不可能同時(shí)成立 規(guī)律總結(jié) 拓展演練 1 解絕對(duì)值不等式常用的三種解題思路及應(yīng)用的思想為 1 利用絕對(duì)值不等式的幾何意義求解 體現(xiàn)數(shù)形結(jié)合思想 2 利用 零點(diǎn)分段法 求解 體現(xiàn)分類(lèi)討論思想 3 通過(guò)構(gòu)建函數(shù) 利用函數(shù)圖象求解 體現(xiàn)函數(shù)與方程思想 2 常用的證明不等式的方法 1 比較法 比較法包括作差比較法和作商比較法 2 綜合法 利用某些已經(jīng)證明過(guò)的不等式 例如算術(shù)平均數(shù)與幾何平均數(shù)的定理 和不等式的性質(zhì) 推導(dǎo)出所要證明的不等式 規(guī)律總結(jié) 拓展演練 3 分析法 證明不等式時(shí) 有時(shí)可以從求證的不等式出發(fā) 分析使這個(gè)不等式成立的充分條件 把證明不等式轉(zhuǎn)化為判定這些充分條件是否具備的問(wèn)題 如果能夠肯定這些充分條件都已具備 那么就可以斷定原不等式成立 4 反證法 可以從正難則反的角度考慮 即要證明不等式A B 先假設(shè)A B 由題設(shè)及其他性質(zhì)推出矛盾 從而肯定A B 凡涉及的證明不等式為否定命題 唯一性命題或含有 至多 至少 不存在 不可能 等詞語(yǔ)時(shí) 可以考慮用反證法 5 放縮法 要證明不等式A B成立 借助一個(gè)或多個(gè)中間變量通過(guò)適當(dāng)?shù)姆糯蠡蚩s小達(dá)到證明不等式的方法 規(guī)律總結(jié) 拓展演練 1 設(shè)f x x 1 2 x 1 的最大值為m 1 求m 2 若a b c 0 a2 2b2 c2 m 求ab bc的最大值 解 1 當(dāng)x 1時(shí) f x 3 x 2 當(dāng) 1 x 1時(shí) f x 1 3x 2 當(dāng)x 1時(shí) f x x 3 4 故當(dāng)x 1時(shí) f x 取得最大值m 2 2 由 1 知a2 2b2 c2 2 a2 2b2 c2 a2 b2 b2 c2 2ab 2bc 2 ab bc 當(dāng)且僅當(dāng)a b c 時(shí) 等號(hào)成立 此時(shí)ab bc取得最大值1 規(guī)律總結(jié) 拓展演練 2 已知函數(shù)f x x a x 2 1 當(dāng)a 3時(shí) 求不等式f x 3的解集 2 若f x x 4 的解集包含 1 2 求a的取值范圍 當(dāng)x 2時(shí) 由f x 3 得 2x 5 3 解得x 1 當(dāng)2 x 3時(shí) f x 3無(wú)解 當(dāng)x 3時(shí) 由f x 3 得2x 5 3 解得x 4 故f x 3的解集為 x x 1或x 4 2 f x x 4 x 4 x 2 x a 當(dāng)x 1 2 時(shí) x 4 x 2 x a 4 x 2 x x a 2 a x 2 a 由條件得 2 a 1 且2 a 2 即 3 a 0 故滿(mǎn)足條件的a的取值范圍為 3 0 規(guī)律總結(jié) 拓展演練 3 若實(shí)數(shù)a b滿(mǎn)足ab 0 且a2b 4 a b m恒成立 1 求m的最大值 2 若2 x 1 x a b對(duì)任意的a b恒成立 求實(shí)數(shù)x的取值范圍 規(guī)律總結(jié) 拓展演練 4 2018全國(guó) 文23 設(shè)函數(shù)f x 5 x a x 2 1 當(dāng)a 1時(shí) 求不等式f x 0的解集 2 若f x 1 求a的取值范圍 可得f x 0的解集為 x 2 x 3 2 f x 1等價(jià)于 x a x 2 4 而 x a x 2 a 2 且當(dāng)x 2時(shí)等號(hào)成立 故f x 1等價(jià)于 a 2 4 由 a 2 4可得a 6或a 2 所以a的取值范圍是 6 2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 選考4系列 8.2 不等式選講課件 2019 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 專(zhuān)題 系列 不等式 課件
鏈接地址:http://m.kudomayuko.com/p-5700731.html