汽車縱梁沖孔生產(chǎn)線上的上料裝置設計含4張CAD圖
汽車縱梁沖孔生產(chǎn)線上的上料裝置設計含4張CAD圖,汽車,沖孔,生產(chǎn),線上,裝置,設計,CAD
摘 要
隨著科技的進步,工業(yè)領(lǐng)域的自動化程度越來越高,作為機械行業(yè),肩負著國家制造業(yè)的興衰,也是衡量一個國家綜合國力的主要標志。目前,在機械加工生產(chǎn)線上多數(shù)采用的是電、氣、液相結(jié)合的一體化模式。板材送進裝置是生產(chǎn)線上的重要環(huán)節(jié),是連接主機和工作機的橋梁。本文討論了汽車沖孔生產(chǎn)線上的送料裝置的結(jié)構(gòu)組成和工作原理,簡單介紹了汽車沖孔生產(chǎn)線的發(fā)展狀況、組成部分及其用途,并且在此基礎上進行了改進,實現(xiàn)了板材的快速、準確定位。因此,成功設計該裝置具有十分重要的意義,它可以在一定程度上促進生產(chǎn)自動化,減少運輸時間,降低工人的勞動強度,提高生產(chǎn)效率,降低勞動成本,給企業(yè)帶來更大的經(jīng)濟效益。
關(guān)鍵詞:夾鉗;上料裝置;板材;沖孔
Abstract
With the advances in technology, the high degree of automation of the industrial areas of the shoulder as the machinery industry, the rise and fall of national manufacturing is the main indicator to measure a country's comprehensive national strength. At present, the majority used in the machining production line integration mode is a combination of electricity, gas and liquid. Sheet sent to the device is an important part of the production line, is a bridge to connect the host machine. This paper discusses the structure and working principle of the car punching production line feeding device, briefly introduced the development of automotive punching production line, part of their purpose, and on this basis has been improved, and plate rapid accurate positioning. And the clamp device is an ongoing job for a long time, we have to study it. Therefore, the successful design of this device has great significance to a certain extent, it can promote the production automation, reduce transit time, reduce labor intensity, increase productivity, reduce labor costs and bring greater economic benefits to the enterprise.
Key words: Clamp; Feeding device; Sheet; Punching
目 錄
摘 要 I
Abstract II
第1章 緒論 1
1.1 汽車縱梁沖孔生產(chǎn)線上的上料裝置研究的意義 1
1.2 汽車縱梁沖孔生產(chǎn)線的國內(nèi)外發(fā)展情況 1
1.2.1 國外情況 1
1.2.2 國內(nèi)情況 2
1.3 汽車縱梁沖孔生產(chǎn)線的工作原理 2
1.4 汽車縱深沖孔生產(chǎn)線的結(jié)構(gòu)及用途 3
1.4.1 上料臺車及吸盤上料機構(gòu) 3
1.4.2 上料送進裝置 3
1.4.3 主機部件 4
1.4.4 導料裝置 5
1.4.5 下料工作臺及接料架 5
第2章 送料裝置設計方案 6
2.1 設計方案列舉 6
2.1.1 設計方案一 6
2.1.2 設計方案二 7
2.1.3 設計方案三 7
2.2 設計方案比較 8
2.2.1 經(jīng)濟型分析 8
2.2.2 電機選擇分析 8
2.2.3 傳動方式比較分析 9
2.3 本裝置設計方案 9
第3章 STPK120夾鉗裝置概述 10
3.1 STPK120夾鉗裝置簡介 10
3.2 STPK120夾鉗裝置工作原理 10
3.3 傳送裝置總體結(jié)構(gòu)及其各部分功能 11
3.4 傳送料裝置各部件結(jié)構(gòu) 11
3.4.1 傳感器 12
3.4.2 油缸 15
3.4.3 鎖緊缸 15
3.4.4 支座 15
3.4.5 汽缸支架 15
第4章 板材力學分析 16
4.1 設計有關(guān)技術(shù)參數(shù) 16
4.2 板材力學分析 16
4.3 液壓油的選擇 18
4.3.1 液壓油的選用原則 18
4.3.2 本裝置液壓油的選擇 20
第5章 液壓缸設計 22
5.1 缸筒的功能 22
5.2 油缸筒參數(shù)計算 22
5.2.1 液壓缸的基本參數(shù)的確定 22
5.3 油缸工藝分析 24
5.3.1 工藝性分析 24
5.3.2 確定毛坯的制造形式 25
5.3.3 油缸的工藝過程制訂 26
第6章 送料裝置主要零件設計 28
6.1 減速機的選擇 28
6.1.1 傳動件選擇 28
6.1.2 減速機的選擇計算 28
6.2 伺服電機的選擇 29
6.2.1 功率計算 29
6.2.2 電動機類型選擇 30
6.3 齒輪的設計及校合 31
6.3.1 齒輪的選擇 31
6.3.2 按齒面接觸強度設計 31
6.3.3 按齒根彎曲強度設計 32
6.3.4 幾何尺寸的計算 33
6.3.5 羅升齒輪的特點 34
6.4 齒條的設計及校合 34
6.4.1 羅升齒條的選用 35
6.4.2 齒條基本參數(shù)的確定 35
6.5 彈簧的設計 35
6.5.1 彈簧設計 35
6.5.2 彈簧的計算 36
6.5.3 彈簧設計參數(shù)確定與計算 37
6.6 齒輪平鍵校核 39
6.7 接近開關(guān)的設計 40
6.7.1 工作原理與分類 40
6.7.2 型號選擇 40
6.7.3 接近開關(guān)作用 41
結(jié) 論 42
致 謝 43
參考文獻 44
CONTENTS
Abstract I
Chapter 1 Introduction 1
1.1 Automobile Frame punching production line feeding device significance of the study 1
1.2 Car stringer punching production line at home and abroad 1
1.2.1 Abroad 1
1.2.2 The domestic situation 2
1.3 Automobile Frame punching production line works 2
1.4 Structure and use of the auto depth punching production line 3
1.4.1 The material trolley and suction feeding mechanism 3
1.4.2 The material sent to the device 3
1.4.3 Host Components 4
1.4.4 Conducting device 5
Chapter 2 feeders design 6
2.1 The design of enumeration 6
2.1.1 The first design 6
2.1.2 The second design 7
2.1.3 The third Design 7
2.2 The design comparison 8
2.2.1 The economic analysis 8
2.2.2 Motor Selection 8
2.2.3 Transmission 9
2.3 Device design 9
STPK120 clamp device Overview 10
3.1 STPK120 clamping devices Introduction 10
3.2 STPK120 clamp device works 10
3.3 Transfer unit in general stracture and fuction of each 11
3.4 The various components of the feed device structure 11
3.4.1 Sensor 12
3.4.2 The fuel tank 15
3.4.3 Locking cylinder 15
3.4.4 Supports 15
3.4.5 The cylinder bracket 15
Chapter 4, sheet metal mechanics 16
4.1 Design of the technical parameters 16
4.2 Analysis of sheet metal mechanics 16
4.3 Hydraulic oil of choice 18
4.3.1 The hydraulic oil selection principles 18
4.3.2 Hydraulic oil selection 20
Chapter 5, the hydraulic cylinder design 22
5.1 Cylinder functions 22
5.2 Cylinder tube parameter calculation 22
5.2.1 The basic parameters of the hydraulic cylinder to determine 22
5.3 Fuel tank process analysis 24
5.3.1 The analysis of the process 24
5.3.2 To determine the rough form of manufacturing 25
5.3.3 The fuel tank of the process to develop 26
Chapter 6, the main parts of the feeding device design 28
6.1 Reducer selection 28
6.1.1 The transmission choice 28
6.1.2 Reducer choice calculation 28
6.2 Servo motor selection 29
6.2.1 The power calculation 29
6.2.2 The motor type selection 30
6.3 gear design and the school together 31
6.3.1 Gear choice 31
6.3.2 Strength Design of tooth contact 31
6.3.3 Tooth root bending strength design 32
6.3.4 The calculation of the geometric dimensions 33
6.3.5 Law l gear features 34
6.4 Rack design and school closure 34
6.4.1 Luo l rack selection 35
6.4.2 Rack determine the basic parameters 35
6.5 Spring design 35
6.5.1 Spring design 35
6.5.2 Spring calculation 36
6.5.3 Spring design parameters and calculation 37
6.6 Gear level key check 39
6.7 The proximity switch design 40
6.7.1 Works and classification 40
6.7.2 Model selection 40
6.7.3 Proximity Switches role 41
Conclusions 42
Acknowledgements 43
References 44
45
第1章 緒論
1.1 汽車縱梁沖孔生產(chǎn)線上的上料裝置研究的意義
隨著科技的進步,工業(yè)領(lǐng)域的自動化程度越來越高,作為機械行業(yè),肩負著國家制造業(yè)的興衰,也是衡量一個國家綜合國力的主要標志。目前,在機械加工生產(chǎn)線上多數(shù)采用的是電、氣、液相結(jié)合的一體化模式。板材送進夾鉗是生產(chǎn)線上的重要環(huán)節(jié),是連接主機和工作機的橋梁。因此,成功設計該裝置具有十分重要的意義,它可以在一定程度上促進生產(chǎn)自動化,減少運輸時間,降低工人的勞動力度,提高生產(chǎn)效率,降低勞動成本,給企業(yè)帶來更大的經(jīng)濟效益。
1.2 汽車縱梁沖孔生產(chǎn)線的國內(nèi)外發(fā)展情況
1.2.1 國外情況
直到20世紀80年代中期,大批量生產(chǎn)汽車底盤的專業(yè)制造廠家主要還是靠大噸位壓力機一次沖壓成形,這種大型壓力機的投資巨大,而針對一種車型的一套沖壓成型模具從設計到生產(chǎn),周期很長,一般要半年以上,制造成本也很昂貴,在新車型的試制過程中會大大增加產(chǎn)品開發(fā)的成本和風險。于是在20 世紀80年代后期,歐洲開始在汽車底盤縱梁孔的生產(chǎn)中引進數(shù)控沖孔生產(chǎn)技術(shù)。國外汽車縱梁沖孔生產(chǎn)線生產(chǎn)廠家主要有比利時索能公司、美國Beatty公司、德國Rasikin公司、意大利FICEP公司等,其中比利時索能公司最具代表性。荷蘭的DAF卡車集團、德國的M.A.N.集團、瑞典的VOLVO汽車集團等全球著名汽車制造商都在近十年左右使用了索能公司的3DU形槽梁數(shù)控三面沖孔生產(chǎn)線[1]。
1.2.2 國內(nèi)情況
我國由于汽車工業(yè)的快速發(fā)展,競爭的不斷加劇,汽車生產(chǎn)廠家過去少品種、大批量的生產(chǎn)方式也已遠遠不能滿足現(xiàn)在的市場需求。于是我國在20世紀90年代后期引進了兩條數(shù)控縱梁沖孔生產(chǎn)線,一條是二汽集團車架廠引進的德Rasikin公司生產(chǎn)的第一條也是最后一條數(shù)控縱梁平板沖孔生產(chǎn)線,另一條是江淮汽車廠引進的意大利FICEP公司生產(chǎn)的數(shù)控縱梁平板沖孔生產(chǎn)線。進入21世紀,微電子技術(shù)和信息通信技術(shù)的快速發(fā)展為柔性自動化提供了重要的技術(shù)支撐,工業(yè)裝備的數(shù)控化、自動化、柔性化呈現(xiàn)蓬勃發(fā)展的態(tài)勢[6]?,F(xiàn)在國內(nèi)引進使用最多的是比利時索能公司生產(chǎn)的3D U形槽梁數(shù)控三面沖孔生產(chǎn)線。
我國的汽車平板縱梁數(shù)控沖孔生產(chǎn)線最早是在2000年開始借鑒國外的技術(shù)并結(jié)合中國國內(nèi)汽車企業(yè)現(xiàn)狀著手研制開發(fā)的。目前,國產(chǎn)數(shù)控縱梁沖孔生產(chǎn)線已有40多條,先后在一汽集團、二汽集團、重汽集團及其下屬汽車制造廠以及江淮汽車、北汽福田、山東時風集團、南京依維柯、亞星-奔馳等20多家汽車及配件生產(chǎn)廠家得到應用。數(shù)控縱梁生產(chǎn)線生產(chǎn)廠家以濟南鑄造鍛壓機械研究所開發(fā)的最早,開發(fā)品種最多[2]。
1.3 汽車縱梁沖孔生產(chǎn)線的工作原理
汽車縱梁數(shù)控平板沖孔線由自動上料電磁吸盤將板料從上料側(cè)移動料臺上移到上料輥。首先對板料進行板端定位,后自動上料對中裝置將板料對中后,夾鉗將板料夾緊,確定板料在機床坐標系中的位置,送進機構(gòu)帶動工件移動。然后按照自動編程所生成的程序達到待沖孔位的精確定位,通過控制液壓沖孔單元的主閥,控制油缸活塞的上下運動,從而實現(xiàn)對板料的沖壓加工。加工的廢物由排屑機輸出到廢物小車中。成品由下料夾鉗夾持,送進機構(gòu)帶動工件移動到達指定位置,由推料裝置將板料從下料輥推移到下料側(cè)儲料框上,由行車吊走。
夾鉗夾住工件的側(cè)面,工件放在輥子上,夾鉗夾住工件,拖動工件前行,送到主機進行沖孔加工。一般情況下,采用多個夾鉗共同夾住板材,夾鉗口伸入到板側(cè)面20—30mm,即可夾住。眾多夾鉗并排放在平板上,平板下有滑軌,由電機驅(qū)動齒輪、齒條,即可驅(qū)動平板在滑軌上運行。夾鉗夾緊力靠油缸夾緊,油缸為單作用油缸,即復位采用油缸彈簧。夾鉗伸縮采用SMC公司的鎖緊缸,此缸在行程上可在任意位置停止鎖緊活塞,使夾鉗不竄動。
該裝置的動作過程為:當工件位置放好后,夾鉗頭在汽缸的推動下伸出;當工件進入夾鉗口時,板材側(cè)面接觸到感應塊時,感應塊后退,接近開關(guān)得到信號;控制系統(tǒng)收到接近開關(guān)的信號,油缸進油,上鉗口下壓,壓住板材,同時汽缸活塞鎖緊不動;夾緊后,夾鉗帶著工件在齒輪、齒條驅(qū)動下前行,送往主機。然后當主機對板材沖孔加工后,控制系統(tǒng)得到命令后,油缸卸壓,在油缸彈簧的作用下活塞桿上升,夾頭在復位彈簧的作用下回到初始位置。同時鎖緊氣缸拉動油缸回到原位置,至此整個動作結(jié)束。
1.4 汽車縱深沖孔生產(chǎn)線的結(jié)構(gòu)及用途
1.4.1 上料臺車及吸盤上料機構(gòu)
上料電動臺車可通過按鈕控制運行至線外,裝載行車吊運的板垛后,再運行至自動上料位置,預備執(zhí)行自動程序。
吸盤上料機構(gòu)是自動上料部分的C型結(jié)構(gòu)件,該裝置完成上料動作吸盤架上安裝有電磁吸盤,用以吸持板料;串聯(lián)液壓缸保證吸盤架同步升降,整個吸盤裝置前后橫向移動由一個水平液壓缸驅(qū)動,三根精密直線導軌導向運行平穩(wěn),保證兩端同步。
當電動送料臺車停在指定工作位置后,吸盤下行從臺車上吸住板料,而后上升,將板料水平運送至上料支撐輥上方,再將板料放在上料支撐輥上,然后吸盤返回初始位置,等待信號開始下一個工作循環(huán)[3]。
1.4.2 上料送進裝置
1. 送料工作臺
送料工作臺由上料臺架、上料輥、對中裝置和送進夾鉗等零部件組成。上料臺架安放在上料部件C型開口床身內(nèi)側(cè)下面的平面上,結(jié)構(gòu)簡潔、重量輕。上料臺架的下面安裝有調(diào)整地腳,即便于安放床身,又能方便調(diào)平上料臺。
2. 上、下料送進夾鉗
本機上料工作臺和下料工作臺各有一個夾鉗送進機構(gòu),二者結(jié)構(gòu)對稱。夾鉗裝置主要由單作用油缸、鎖緊缸、支座、氣缸支架、浮動夾鉗支架、傳感器等零件組成。送進由伺服減速電機驅(qū)動,當板料經(jīng)移動對中定位后,送進夾鉗推送板料到達指定位置——板前端定位于X2軸夾鉗口,到位發(fā)訊后移動對中前伸后對中完成,這時張開的X1夾鉗夾緊板料,預備送進沖孔;當板料到達主機出料側(cè)時,下料送進開始動作,同樣是夾鉗夾緊板料,由電機控制開始送進。
3. 固定對中定位裝置
固定對中定位裝置共有5組,每組由底板、電機傳動裝置、雙向絲杠、對中定位柱、中間定位孔銷以及刻度尺等組成。當吸盤將板料吸放到工作臺上后,固定對中定位裝置和移動對中裝置開始起作用。固定對中裝置是指在工件(板料)的沖孔過程中是固定的,而為了適應不同長度規(guī)格板料的對中需要,可根據(jù)不同長度的板料,選擇相應的對中裝置配合板料前真?zhèn)€移動對中執(zhí)行對中操縱。對中時,電機控制雙向絲杠旋轉(zhuǎn),從而帶動定位柱同時向中間移動完成對中。中間的定位孔銷,在板料上有定位孔時用來定位,并有下真?zhèn)€刻度尺作為輔助。對中定位完成,夾鉗夾持板料后,固定對中定位裝置松開,恢復原來狀態(tài)。
4. 移動對中定位裝置
移動對中定位裝置的對中部分的結(jié)構(gòu)和工作原理,與固定對中裝置的對中部分基本相同,只是在結(jié)構(gòu)上多了一個氣缸及滑塊。當板料就位后移動對中和固定對中同時起作用,對中完成后,固定對中恢復原來狀態(tài),移動對中夾持狀態(tài)保持不變。移動對中裝置在沖孔階段內(nèi)跟隨夾鉗送進裝置移動,轉(zhuǎn)為2支夾鉗夾持板料進行沖壓工作后,移動對中裝置對中部分恢復原來分開狀態(tài),并由氣缸將其拖回原來初始位置。
1.4.3 主機部件
主要是完成機床的核心功能——沖孔。它由閉式床身、模具庫、廢物處理裝置和前后導料架等組成。
1.4.4 導料裝置
導料裝置由導柱、支架、油缸以及上、下輥等組成。在整個工件送進過程中,在上料側(cè)夾鉗送進動作結(jié)束前,導料油缸的推動輥輪壓緊板料的上、下表面。這樣板料轉(zhuǎn)由導料輥輪和下料夾鉗夾持,保證了沖孔動作的連續(xù)性和平穩(wěn)性。
1.4.5 下料工作臺及接料架
下料工作臺由下料臺架、下料輥、下料夾鉗、導料裝置、自動推料裝置和接料裝置等零部件組成。下料臺安放在下料基座上,在下料臺架上面安裝有下料輥組成工作臺面,用于傳送板料,此處安裝有夾鉗送進機構(gòu),采用齒輪齒條傳動方式,導軌導向。板料加工完后,夾鉗會自動運行至適合的下料位置。此時,下料夾鉗停止運動,鉗口張開,推料裝置動作,將板料平穩(wěn)的推進接料架。下料工作臺主要是提供了一個載體,便于夾鉗送進裝置的安裝及板料的運行[4]。
第2章 送料裝置設計方案
2.1 設計方案列舉
2.1.1 設計方案一
夾鉗裝置布置位置采用側(cè)面夾緊方式,結(jié)構(gòu)如圖2-1所示:
圖2-1 側(cè)面夾緊夾鉗裝置
1-夾鉗上臂;2-彈簧;3-復位彈簧;4-內(nèi)六角螺釘
當板材進入夾鉗口時,板材側(cè)面接觸到感應塊,感應塊后退,接近開關(guān)得到信號,控制系統(tǒng)收到接近開關(guān)的信號,油缸進油,上鉗口下壓,壓住板材,同時氣缸活塞鎖緊不動。
傳送是用伺服電機通過精密減速機與齒輪連接,齒輪和上料架上的齒輪嚙合。待夾鉗夾緊后,夾鉗帶著工件在齒輪、齒條驅(qū)動下前行,送往主機。
2.1.2 設計方案二
夾鉗裝置布置采用兩端定位夾緊方式,總體結(jié)構(gòu)如圖2-2所示:
1-接近開關(guān);2-彈簧;3-開關(guān)檢測板;4-夾鉗上臂
圖2-2 兩端夾緊夾鉗裝置
首先對板料進行板端定位,后自動上料對中裝置將板料對中后,夾鉗將板料夾緊,確定板料在機床坐標系中的位置,送進機構(gòu)帶動工件移動。送進夾鉗推送板料到達指定位置——板前端定位于夾鉗口,到位發(fā)訊后移動對中前伸后對中完成,這時張開的夾鉗夾緊板料,準備送進沖孔。
傳送方式是用步進電機通過精密減速機與齒輪連接,齒輪和上料架上的齒條嚙合。待夾鉗夾緊后,夾鉗帶著工件在齒輪、齒條驅(qū)動下前行,送往主機。
2.1.3 設計方案三
總體結(jié)構(gòu)如方案二,區(qū)別在于電機選擇不同。本方案傳送方式采用伺服電機通過精密減速器與齒輪連接,通過齒輪齒條傳動帶動夾鉗運動。
2.2 設計方案比較
2.2.1 經(jīng)濟型分析
從設計經(jīng)濟角度分析,為了減小生產(chǎn)成本,創(chuàng)造更多的效益,同時具備良好的生產(chǎn)性能,方案二的夾鉗布置少,定位夾緊能力也具備優(yōu)越性和靈活性。方案一由于采用一側(cè)夾緊,在板料相對較長的情況下夾鉗布置較多,在經(jīng)濟性方面不具備優(yōu)勢。方案二能夠節(jié)約生產(chǎn)設計成本,為廠家產(chǎn)生良好的經(jīng)濟效益。
2.2.2 電機選擇分析
1. 選用步進電機控制
步進電機是一種離散運動的裝置,它和現(xiàn)代數(shù)字控制技術(shù)有著本質(zhì)的聯(lián)系。兩相混合式步進電機步距角一般為、,五相混合式步進電機步距角一般為、,也有一些高性能的步進電機步距角更小。
當步進電機工作在低速時,一般應采用阻尼技術(shù)來克服低頻振動現(xiàn)象,比如在電機上加阻尼器,或驅(qū)動器上采用細分技術(shù)等。步進電機的輸出力矩隨轉(zhuǎn)速升高而下降,所以其最高工作轉(zhuǎn)速一般在300~600RPM,其控制為開環(huán)控制,為保證其控制精度,應用時應處理好升、降速問題。
2. 選用交流伺服電機控制
隨著全數(shù)字式交流伺服系統(tǒng)的出現(xiàn),交流伺服電機也越來越多地應用于數(shù)字控制系統(tǒng)中。交流伺服電機的控制精度由電機軸后端的旋轉(zhuǎn)編碼器保證,是步距角為的步進電機的脈沖當量的。交流伺服系統(tǒng)具有共振抑制功能,可涵蓋機械的剛性不足,并且系統(tǒng)內(nèi)部具有頻率解析機能(FFT),可檢測出機械的共振點,便于系統(tǒng)調(diào)整。
交流伺服電機為恒力矩輸出,即在其額定轉(zhuǎn)速(一般為2000RPM或3000RPM)以內(nèi),都能輸出額定轉(zhuǎn)矩,在額定轉(zhuǎn)速以上為恒功率輸出。交流伺服驅(qū)動系統(tǒng)為閉環(huán)控制,加速性能較好。
一個集成的系統(tǒng)通常具有傳統(tǒng)的伺服系統(tǒng),包括四個,電機體積可減少(從10至100英寸),以及編碼器選項板。集成系統(tǒng),諸如力士樂的IndraDrive,可支持多達20個驅(qū)動器的電纜[5]。
3. 方案比較
就控制精度而言,通過比較步距角,交流伺服電機優(yōu)于步進電機。步進電機在低速時易出現(xiàn)低頻振動現(xiàn)象,這種由步進電機的工作原理所決定的低頻振動現(xiàn)象對于機器的正常運轉(zhuǎn)非常不利。而交流伺服電機運轉(zhuǎn)非常平穩(wěn),即使在低速時也不會出現(xiàn)振動現(xiàn)象。
步進電機一般不具有過載能力,需要選取較大的轉(zhuǎn)矩,而機器在正常工作期間又不需要那么大的轉(zhuǎn)矩,便出現(xiàn)了力矩浪費的現(xiàn)象。交流伺服電機具有較強的過載能力,且一般不會出現(xiàn)步進電機的丟步或過沖的現(xiàn)象,控制性能更為可靠。交流伺服驅(qū)動加速性能較步進電機好,可用于要求快速啟停的控制場合。
綜上所述,交流伺服電機系統(tǒng)在許多性能方面都優(yōu)于步進電機,所以選用交流伺服電機系統(tǒng)控制。
2.2.3 傳動方式比較分析
齒輪齒條傳動穩(wěn)定可靠,加工精度也很高,且經(jīng)濟性適中合理。綜上所述,采用設計方案三,通過方案可行性分析,該方案滿足生產(chǎn)設計要求。
2.3 本裝置設計方案
根據(jù)各種設計方案比較分析,采用設計方案二提出的兩端夾緊和方案三提出的交流伺服電機控制。
第3章 STPK120夾鉗裝置概述
本設計的上料送進部件主要是參考STPK120夾鉗裝置而設計,因此特介紹STPK120夾柑裝置上料送進的個部件以及其功能[6]。
3.1 STPK120夾鉗裝置簡介
STPK120板材夾鉗裝置是廣泛吸收國內(nèi)外現(xiàn)有的液壓,氣壓夾鉗裝置的先進技術(shù)基礎上,針對板材的型號長、厚、寬分別為12m,6-10mm,300-600mm,而開發(fā)研制的。板材的兩端分別布置一個該夾柑裝置,這樣能夠節(jié)省大量的材料,對大批量的板材生產(chǎn)具有降低成本的優(yōu)點。該夾柑夾緊力靠油缸夾緊,伸縮采用SMC公司的鎖緊缸。它具有結(jié)構(gòu)可靠,傳動平穩(wěn),節(jié)省材料,動作靈敏等優(yōu)點。
3.2 STPK120夾鉗裝置工作原理
該裝置結(jié)構(gòu)如圖3-2,具體的工作原理如下:
工件放在輥子上,夾柑夾住工件的端面,拖動工件前行,送到主機進行沖孔加工。一般情況下,以一端的夾柑為主,夾柑口伸入到板端面20-30mm,即可夾住。平板下有滑軌,由電機驅(qū)動齒輪、齒條,即可驅(qū)動平板在滑軌上運行。夾柑夾緊力靠油缸夾緊,油缸為單作用油缸,復位采用彈簧機構(gòu),夾柑伸縮采用SMC公司的鎖緊缸,此缸在行程上可在任意位置停止鎖緊活塞,使夾鉗不竄動。
該夾鉗的具體工作過程為:當工件位置放好后,夾鉗頭在汽缸的推動下伸出,當工件進入夾鉗口時,板材端面接觸到感應塊時,感應塊后退,接近開關(guān)得到信號,控制系統(tǒng)收到接近開關(guān)的信號,油缸進油,上鉗口下壓,壓住板材,同時汽缸活塞鎖緊不動;夾緊后,夾鉗帶著工件在齒輪、齒條驅(qū)動下前行,送往主機。然后當主機對板材沖孔加工后,控制系統(tǒng)得到命令后,油缸卸壓,在油缸彈簧的作用下活塞桿上升,夾頭在復位彈簧的作用下回到初始位置,同時鎖緊氣缸拉動油缸回到原位置,至此整個動作結(jié)束。工作原理圖如圖3-1所示。
1-開關(guān);2-夾鉗座;3-連接座;4-送進座;5-油缸
圖3-1 STPK120夾鉗裝置的結(jié)構(gòu)示意圖
3.3 傳送裝置總體結(jié)構(gòu)及其各部分功能
該裝置由連接座,單作用油缸、鎖緊缸、支座、氣缸支架、浮動夾鉗支架、傳感器,送進座,夾鉗,伺服減速電機,拖鏈連接板等部件組成。能夠節(jié)省大量的材料,對大批量的板材生產(chǎn)具有降低成本的優(yōu)點。
由于板材長度過長,故需兩端一起定位、夾緊,由上下料夾。鉗共同實現(xiàn)。夾鉗夾緊力靠油缸夾緊,油缸為單作用油缸,即復位采用油缸彈簧。
3.4 傳送料裝置各部件結(jié)構(gòu)
支座、氣缸支架、浮動夾鉗支架都是焊接件,不得出現(xiàn)明顯焊接變形,焊后清渣,焊后去焊接應力,銳邊倒鈍,發(fā)黑處理。油缸活塞桿采用的材料是45鋼,加工時注意銳邊倒鈍和T235。油缸的材料也是45鋼,加工時注意銳邊倒鈍,進行去除應力處理。
3.4.1 傳感器
1. 傳感器作用
工程上通常把直接作用于被測量,能按一定規(guī)律將被測量轉(zhuǎn)換成同種或別種量值輸出的器件,稱為傳感器。傳感器處于測試裝置的輸入端,其性能將直接影響著整個測試裝置的工作質(zhì)量。
傳感器的作用類似于人的感覺器官。它把被測量,如力、位移、溫度等,轉(zhuǎn)換為易測信號,傳送給測量系統(tǒng)的信號調(diào)理環(huán)節(jié)。
傳感器也可以認為是人類感官的延伸,因為借助傳感器可以去探索那些人們無法用感官直接測量的事物,例如,用熱電偶可以測得熾熱物體的溫度;用超聲波探測器可以測量海水深度;用紅外遙感器可從高空探測地面上的植被和污染情況,等等。因此,可以說傳感器是人們認識自然界的有力工具,是測量儀器與被測事物之間的接口。
在工程上也把提供與輸入量有特定關(guān)系的輸出量的器件,成為測量變換器。傳感器就是輸入量為被測量的測量變換器。
隨著測試、控制與信息技術(shù)的發(fā)展,傳感器作為這些領(lǐng)域里 的一個重要構(gòu)成因素收到了普遍重視,成為20世紀90年代的關(guān)鍵技術(shù)之一。深入研究傳感器類型、原理和應用,研制開發(fā)新型傳感器,對于科學技術(shù)和生產(chǎn)工程中的自動控制和智能化發(fā)展,以及人類觀測研究自然界事物的深度和廣度都有重要的實際意義。
2. 傳感器分類
傳感器分類方法很多??梢杂貌煌挠^點對傳感器進行分類:它們的轉(zhuǎn)換原理(傳感器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及制作它們的材料和工藝等。
(1) 按被測量物體
可分為位移傳感器、力傳感器、溫度傳感器等。
(2) 按傳感器工作原理
可分為機械式、電器式、光學式、流體式等。
(3) 信號變換特征
也可概括分為物性型和結(jié)構(gòu)型。
(4) 按敏感元件與被測對象之間的能量關(guān)系
可分為能量轉(zhuǎn)換型與能量控制型。
(5) 按輸出信號的類型
可分為模擬式和數(shù)字式等。
3. 傳感器的選用原則
現(xiàn)代傳感器在原理與結(jié)構(gòu)上千差萬別,如何根據(jù)具體的測量目的、鋇1量對象以及測量環(huán)境合理地選用傳感器,是在進行某個量的測量時首先要解決的問題。當傳感器確定之后,與之相配套的測量方法和測量設備也就可以確定了。測量結(jié)果的成敗,在很大程度上取決于傳感器的選用是否合理。
(1) 根據(jù)測量對象與測量環(huán)境確定傳感器的類型
要進行一個具體的測量工作,首先要考慮采用何種原理的傳感器,這需要分析多方面的因素之后才能確定。因為,即使是測量同一物理量,也有多種原理的傳感器可供選用,哪一種原理的傳感器更為合適,則需要根據(jù)被測量的特點和傳感器的使用條件考慮以下一些具體問題:量程的大小;被測位置對傳感器體積的要求;測量方式為接觸式還是非接觸式;信號的引出方法,有線或是非接觸測量;傳感器的來源,國產(chǎn)還是進口,價格能否承受,還是自行研制。
在考慮上述問題之后就能確定選用何種類型的傳感器,然后再考慮傳感器的具體性能指標。
(2) 靈敏度的選擇
一般來講,傳感器靈敏的越高越好,因為靈敏度越高,意味著傳感器所能感知的變化量越小,被測量稍有微小的變化時,傳感器就有較大的輸出。
當然也應考慮到到,當靈敏度越高時,與測量信號無關(guān)的外界干擾也愈容易混入,并被放大裝置所放大。這時必須考慮既要檢測微小量值,又要干擾小,為保證此點,往往要求信噪比愈大愈好,即要求傳感器本身噪聲小,且不易從外界引入干擾。
當被測量是個矢量時,還應要求傳感器再該方向靈敏度與高愈好,而橫向靈敏度愈小愈好。
(3) 頻率響應特性
傳感器的頻率響應特性決定了被測量的頻率范圍,必須在允許頻率范圍內(nèi)保持不失真的測量條件,實際上傳感器的響應總有一定延遲,希望延遲時間越短越好。
一般來講,利用光電效應、壓電效應等物性傳感器,響應較快,可工作頻率范圍寬。而結(jié)構(gòu)型,如電感、電容、磁電式傳感器等,往往由于結(jié)構(gòu)中的機械系統(tǒng)慣性的限制,其固有頻率低,可工作頻率較低。
在動態(tài)測量中,傳感器的響應特性對測試結(jié)果有直接影響,在選用時,應從分考慮到被測物力量的變化特點(如穩(wěn)態(tài)、瞬變、隨機等)。
(4) 線性范圍
任何傳感器都有一定的線性范圍,在現(xiàn)行方位內(nèi)輸入與輸出成比例關(guān)系。線性范圍愈寬,則表明傳感器的工作量程愈大。 傳感器工作在限行區(qū)域內(nèi),是保證測量精度的基本條件。例如,機械式傳感器中的測力元件,其材料的彈性限是決定測力量程的基本因素。當超過彈性限時,將產(chǎn)生線性誤差。
然而任何傳感器都不容易保證其絕對線性,在許可限度內(nèi),可以在其近似限行區(qū)域內(nèi)應用。連麗如,變間隙型電容、電感傳感器,均采用在出世間隙附近的附近線性區(qū)內(nèi)工作。選用時必須考慮被測物力量的變化范圍,令其線性誤差在允許內(nèi)。
(5) 穩(wěn)定性
傳感器使用一段時間后,其性能保持不變化的能力稱為穩(wěn)定性。影響傳感器長期穩(wěn)定性的因素除傳感器本身結(jié)構(gòu)外,主要是傳感器的使用環(huán)境。因此,要使傳感器具有良好的穩(wěn)定性,傳感器必須要有較強的環(huán)境適應能力。
在選擇傳感器之前,應對其使用環(huán)境進行調(diào)查,并根據(jù)具體的使用環(huán)境選擇合適的傳感器,或采取適當?shù)拇胧?,減小環(huán)境的影響。
傳感器的穩(wěn)定性有定量指標,在超過使用期后,在使用前應重新進行標定,以確定傳感器的性能是否發(fā)生變化。
在某些要求傳感器能長期使用而又不能輕易更換或標定的場合,所選用的傳感器穩(wěn)定性要求更嚴格,要能夠經(jīng)受住長時間的考驗。
(6) 精度
精度是傳感器的一個重要的性能指標,它是關(guān)系到整個測量系統(tǒng)測量精度的一個重要環(huán)節(jié)。傳感器的精度越高,其價格越昂貴,因此,傳感器的精度只要滿足整個測量系統(tǒng)的精度要求就可以,不必選得過高。這樣就可以在滿足同一測量目的的諸多傳感器中選擇比較便宜和簡單的傳感器。
如果測量目的是定性分析的,選用重復精度高的傳感器即可,不宜選用絕對量值精度高的;如果是為了定量分析,必須獲得精確的測量值,就需選用精度等級能滿足要求的傳感器。
對某些特殊使用場合,無法選到合適的傳感器,則需自行設計制造傳感器。自制傳感器的性能應滿足使用要求。
3.4.2 油缸
油缸是該裝置中的重要組成部分,是進行夾鉗動作的直接執(zhí)行部件。油缸可分為單作用缸和雙作用缸,在不同的工作條件下采用不同的型號,單作用缸靠油缸彈簧復位,用于壓力不高的場合;雙作用油缸采用進、出油口,常用于壓力比較高的場合。
3.4.3 鎖緊缸
鎖緊缸選用了日本SMC公司生產(chǎn)的氣缸,它的作用是工作時將油缸伸出去。當傳感器感應到板材時,控制系統(tǒng)得到信號并向氣缸發(fā)送鎖緊信號,此時,氣缸就自動鎖緊不動。
3.4.4 支座
支座的用途是起支撐作用,支撐鎖緊缸和液壓缸進行正常工作,并且和底座用螺紋連接,隨帶傳動一起向主機方向運動。
3.4.5 汽缸支架
氣缸支架是焊接件,固定在支座上,支撐氣缸活塞平穩(wěn)動作,其次還起到導向作用。
第4章 板材力學分析
4.1 設計有關(guān)技術(shù)參數(shù)
需要加工的汽車縱梁鋼板參數(shù):
長12mm,厚6-l0mm,寬300-600mm;
鋼板翹曲最大30mm;
送進速度60m/min;
精密減速器減速比10.10;
夾鉗裝置的布置是:板材的兩端分別布置一個該夾鉗裝置,一個是上料夾鉗,另外一個是下料夾鉗。
4.2 板材力學分析
板材的參數(shù)為:長=12m寬=300~600mm厚=6~10mm
根據(jù)板材在傳送過程中的狀態(tài)主要受力分析如下。
1. 受力分析與計算
(1) 以板材和輥道為研究對象受力分析:
圖4-1 受力分析
1) 摩擦系數(shù)確定
對夾板材鉗、以及輥道進行受力分析,其材料均為鋼材,其主要作用力是摩擦力,摩擦副之間無潤滑摩擦。查[文獻7]表1-1-41:
鋼一鋼摩擦副之間的動摩擦系數(shù)為:= 0.1靜摩擦系數(shù)為:=0.15
2) 板材質(zhì)量計算
取體積為最大情況時計算,此時板材的體積為:
=
查[文獻5]表1-1-36,板材的密度為,則板材的質(zhì)量為
=561.6kg
則板材的重力為:
=561.6×9.8=5503.68N
如圖4-1所示,其中是使板材運動的最小送進力,是板材與輥道之間的摩擦力,則:
==0.1×561.6kg×9.8=550.368N
式中和分別確定如下:
(2) 以板材和夾鉗為研究對象受力分析:
如圖4-2所示,為使板材運動的最小夾鉗力,為夾鉗和
板材之間的摩擦力,則:
N
圖4-2受力分析
(3) 翹曲計算
根據(jù)[文獻5]板材的抗彎剛度計算公式為:
式中 ——板材的抗彎剛度;
——板材的彈性模量,查[文獻5]表2.2取值=200GPa;
——板材的厚度,取值=10mm;
——常數(shù),值為;
所以 ==183.15MPa
板材允許的最大翹曲度為:=30mm
則使板材運動的最大夾鉗力為:
=y×=30mm×183.15MPa=54945N
所以,夾鉗力的取值范圍為:
3669.12N ≦≦54945N
在此范圍內(nèi)既符合要求。
4.3 液壓油的選擇
液壓油是利用液體壓力能的液壓系統(tǒng)使用的液壓介質(zhì),它在液壓系統(tǒng)中起著能量傳遞、系統(tǒng)潤滑、防腐、防銹、冷卻等作用。液壓油的主要類型有機械油、精密機床液壓油、氣輪機油和變壓器油。國際標準化組織把液壓油用H來表示,分為易燃的烴類油、抗燃液壓油兩大類;而我國液壓油參照ISO6743/4,把液壓油分為礦物油型、合成油型及含水液型,主要有制動液航空、艦船和液力傳動等用途。另外,還有難燃液壓油類:HFAE水包油乳化液,HFAS水的化學溶液,HFB油包水乳化液,HFC含聚合物水溶液;HFDR磷酸酷無水合成液(飛機,汽輪機調(diào)速用),HFDS氯化烴無水合成液,HFDU其他成分的無水合成液[8]。
4.3.1 液壓油的選用原則
1. 選擇工程機械用液壓油的依據(jù)[9]
(1) 液壓件
不同的液壓元件對所用液壓油都有一個最低的配置要求,因此選擇液壓油時,應注意液壓件種類及其使用的材質(zhì)、密封件和涂料或油漆等與液壓油的相容性,保證各運動副潤滑良好,使元件達到設計壽命,滿足使用性能的要求。液壓泵是對液壓油的豁度和豁溫性能最敏感的元件之一,因此,常將系統(tǒng)中泵對液壓油的要求作為選擇液壓油的重要依據(jù)(有伺服閥的系統(tǒng)除外)。
(2) 系統(tǒng)工況
如果對執(zhí)行機構(gòu)速度、系統(tǒng)壓力和機構(gòu)動作精確度的要求越高,則對液壓油的耐磨和承載能力等的要求也越高。根據(jù)系統(tǒng)可能的工作溫度,連續(xù)運轉(zhuǎn)時間和工作環(huán)境的衛(wèi)生情況等,選油時須注意油的勃度、高溫性能和熱穩(wěn)定性,以減少油泥等的形成和沉積。
(3) 油箱大小
油箱越小對油的抗氧化性、極壓抗磨性、空氣釋放性和過濾性等要求就越高。
(4) 環(huán)境溫度
針對工程機械在地下、水上、室內(nèi)、室外、寒區(qū)、或是處于溫度變化的嚴寒區(qū),以及附近有無高溫熱源或明火等環(huán)境溫度特點,合理選用液壓油。若附近無明火,工作溫度在60℃以下,承載較輕時,可選用普通液壓油,如果設備須在很低的溫度下啟動時,須選用低凝液壓油。
綜上所述,若液壓油的質(zhì)量合格,系統(tǒng)執(zhí)行機構(gòu)運動速度很高時,油液的流速也高,液壓損失隨之增大,而泄漏相對減少,故宜選擇豁度較低的油;反之,當油的流速低時,泄漏量相對增大,將對工作機構(gòu)運動速度產(chǎn)生影響,這是宜選擇豁度較高的油。通常,當工作壓力高時,宜選用豁度高的液壓油,因為解決高壓時的泄漏問題比克服其豁阻更應優(yōu)先;當工作壓力較低時,宜選用低豁度的油。環(huán)境溫度高時,應采用豁度較高的油,反之,應采用勃度較低的油。
(5) 經(jīng)濟性
要綜合考慮液壓油的價格、使用壽命、以及液壓系統(tǒng)和維護、安全運行周期等情況,著眼于經(jīng)濟效益好的品牌。
(6) 液壓油的最后確定
液壓油初步選定后,還須注意核查其貨源、豁度、質(zhì)量、使用特點、適用范圍,以及對系統(tǒng)和元件材料的相容性,看各項指標是否能完全滿足使用要求。
2. 選擇液壓油的經(jīng)濟性分析
選擇液壓油時,不能只注意油價,而忽視了品種、質(zhì)量、維護與再生等情況,如,在高溫熱源和明火附近的高溫、高壓和精密液壓系統(tǒng),要選用磷酸酷液抗燃液壓油,不能因價貴而用價廉的含水抗燃液代替,這樣會使液壓泵過早的磨損,降低系統(tǒng)精度;又如,在高壓液壓系統(tǒng)中,應選用抗磨液壓油,若選用便宜的機械油或防銹、抗氧液壓油,則液壓泵壽命會縮短。以ISO豁度為等級為VG46的品種L-HH和L-HM油為例,分別用于相同的YB-D25型葉片泵(壓力為12.5MPa,溫度為65℃,轉(zhuǎn)速為1500r/min ),連續(xù)運行250h后測其磨損量,用L-HH油時泵的磨損量為用L-HM油時的63倍。因此,在中高壓系統(tǒng)中,不該使用L-HH或L-HL油,而要選用L-HM抗磨液壓油。對于寒區(qū)和嚴寒區(qū)室作作業(yè)工程機械的高壓系統(tǒng),則于氣溫低,環(huán)境溫度變化大,應該選用高豁度指數(shù)的低溫液壓油,以使系統(tǒng)低溫油液流動性好,冷啟動容易,還會使系統(tǒng)在冬夏季用油一致,不致更換頻繁。高質(zhì)量的抗磨液壓油,熱安定性高,水解安定性好,破乳化能力強,空氣釋放時間短,使用壽命長,可改善系統(tǒng)的運行狀況[10]。
因此,高性能的液壓系統(tǒng)應當用高質(zhì)量的液壓油。選用高質(zhì)量的液壓油,雖然油價較貴,但油品的使用壽命長,液壓元件磨損少,系統(tǒng)維護容易,生產(chǎn)效率高,因此,總的經(jīng)濟效益還是合算的。
4.3.2 本裝置液壓油的選擇
1. 壓力計算
根據(jù)4.2的計算范圍,取一個中間數(shù)值,取=15000N
初選油缸的內(nèi)徑為:= 50mm
則液壓油的壓力為:
==7.6Mpa
2. 油液選擇
查[文獻11]表20-4-25,按環(huán)境、工作壓力和溫度選擇液壓油,白于是室內(nèi)固定液壓設備,且壓力小于7MPa,溫度小于50℃所以選用HL型液壓油。
查[文獻11]表20-4-24,適合的工作介質(zhì)和豁度的等級有32、46、68等液壓油。
根據(jù)4.3.1的液壓油選用原則,比較以上三種液壓油,現(xiàn)選用46號液壓油作為系統(tǒng)用油。46號液壓油是一種不含鋅元素的液壓油產(chǎn)品,完全復符合現(xiàn)行及未來液壓油產(chǎn)品的性能要求。46號液壓油是用溶劑反復精練的石蠟輕質(zhì)基礎油,和能提高產(chǎn)品性能的添加劑精制而成。這些添加劑使得液壓油有效地防止磨損、分離出水份、排出氣體。產(chǎn)品不含鋅元素,減少了發(fā)生過敏反應地幾率,也大大減小了對環(huán)境地影響。46號液壓油之所以能充分保障液壓系統(tǒng)無故障運行,是因為它能有效防止磨損、分離水分、排出氣體。這對環(huán)保十分有利。46號液壓油適用于所有的室內(nèi)液壓系統(tǒng),以及某些室外液壓系統(tǒng),這種液壓油更適用于油一霧以及循環(huán)液壓系統(tǒng)[13]。
取其公稱壓力為6.3MPa則在公稱壓力下夾鉗力為:
=12370N
在本設計取值范圍之內(nèi)。
查[文獻11]表11-25,46號液壓油的運動粘度為:
=41.46
取 = 45。密度為=0.9x kg/則46液壓油的動力粘度為:
=0.018 pa·s
46號液壓油的主要性質(zhì)如表4-1所示:
表4-1 46號液壓油性質(zhì)
50℃運動粘度
動力粘度
0.018pa·s
密度
kg/
公稱壓力
=6.3MPa
粘度指數(shù)≥
90
腐蝕(T3銅片1000℃ 3小時)
合格
第5章 液壓缸設計
5.1 缸筒的功能
油缸是該裝置中的重要組成部分,是進行夾鉗動作的直接執(zhí)行部件。油缸可分為單作用缸和雙作用缸,在不同的工作條件下采用不同的型號。單作用缸靠油缸彈簧復位,用于壓力不高的場合。雙作用油缸采用進、出油口,常用于壓力比較高的場合。本產(chǎn)品采用的是單作用液壓缸,它的主要優(yōu)點是結(jié)構(gòu)簡單,動作靈敏,費用低廉,能很好得完成工作任務。它和活塞、夾頭配合共同完成夾鉗并送往主機。
5.2 油缸筒參數(shù)計算
5.2.1 液壓缸的基本參數(shù)的確定
1. 液壓缸的內(nèi)徑的
液壓缸的內(nèi)徑可由下列公式求得:
式中 一夾鉗力(N);=12370N
一液壓缸的公稱壓力(Pa)
一液壓缸的內(nèi)徑(m)
查文獻[11]單行本表20-6-2的公稱壓力系列選取=6.3MPa,則由上式可得:
==49.9mm
由文獻[11]表]4-2可查得,活塞桿的直徑
=0.5 ×63.58=24.9 mm
由文獻[11]表4-4和4-3對其圓整成標準值得
=50mm,=25mm
2. 最小導向長度的確定
對最小導向長度最多采用經(jīng)驗公式:
式中 ——最小導向長度
——最大工作行程
——液壓缸的內(nèi)徑
由文獻[12]表20-6-2選取最大工作行程為125mm;液壓缸的內(nèi)徑為50mm,代入上式得:
==31.25mm
夜壓缸的活塞行程按設計的結(jié)構(gòu)計算,工作行程能滿足各種板材的要求。
3. 剛體厚度及其外徑強度的校驗
根據(jù)文獻[12]公式( 4.8-7 )剛體的厚度占的取值由強度條件決定。當時可按薄壁公式校驗強度,即
式中 ——最高工作壓力,單位為Pa;
——材料的許用應力,;
——材料的抗拉強度;
——安全系數(shù),一般=5;
由公稱壓力系列表選取=6.3MPa,查文獻[13]得氣
=598MPa,==119.6Mpa,
所以:
==0.334mm
取=15mm
外徑=50+2×15=80mm
4. 活塞桿直徑的強度校核
活塞桿直徑強度按下式進行強度校核即:
式中 ——材料的許用應力,,
本活塞桿的材料為HT150,所以=85.7Mpa;因此由上式可得:
==13.56mm
因此,強度符合要求。
5. 端蓋厚度設計
本液壓缸的端蓋為法蘭式端蓋,當活塞運動到末端時,全部
推力由缸蓋來承擔,其厚度根據(jù)文獻[12]得:
式中 ——工作壓力
——材料的許用應力,=119.6MPa;
——端蓋的外徑,=130mm;
——活塞桿直徑,=25mm;
——螺釘孔直徑,= 8mm;
——作用力平均直徑, = 80mm;
由上式可得:==67mm
5.3 油缸工藝分析
5.3.1 工藝性分析
如圖5-1所示,油缸筒主要加工表面以及它們之間的位置要求如下:
1. 該零件的主要加工
收藏
編號:57788356
類型:共享資源
大?。?span id="t3tq5hx" class="font-tahoma">2MB
格式:ZIP
上傳時間:2022-02-24
40
積分
- 關(guān) 鍵 詞:
-
汽車
沖孔
生產(chǎn)
線上
裝置
設計
CAD
- 資源描述:
-
汽車縱梁沖孔生產(chǎn)線上的上料裝置設計含4張CAD圖,汽車,沖孔,生產(chǎn),線上,裝置,設計,CAD
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。