《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題四 導(dǎo)數(shù)的綜合應(yīng)用(第一課時(shí))“導(dǎo)數(shù)與不等式”考法面面觀講義 理(重點(diǎn)生含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題四 導(dǎo)數(shù)的綜合應(yīng)用(第一課時(shí))“導(dǎo)數(shù)與不等式”考法面面觀講義 理(重點(diǎn)生含解析).doc(22頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專(zhuān)題四 導(dǎo)數(shù)的綜合應(yīng)用
卷Ⅰ
卷Ⅱ
卷Ⅲ
2018
利用導(dǎo)數(shù)的單調(diào)性證明不等式T21(2)
根據(jù)函數(shù)的極值求參數(shù)、不等式的證明T21
導(dǎo)數(shù)在不等式的證明、由函數(shù)的極值點(diǎn)求參數(shù)T21
2017
利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題T21(2)
函數(shù)的單調(diào)性、極值、零點(diǎn)問(wèn)題、不等式的證明T21
由不等式恒成立求參數(shù)、不等式放縮T21
2016
函數(shù)的零點(diǎn)、不等式的證明T21
函數(shù)單調(diào)性的判斷、不等式的證明及值域問(wèn)題T21
函數(shù)的最值、不等式的證明T21
縱向
把握
趨勢(shì)
導(dǎo)數(shù)的綜合問(wèn)題是每年的必考內(nèi)容且難度大.主要涉及函數(shù)的單調(diào)性、極值、零點(diǎn)、不等式的證明.預(yù)計(jì)2019年會(huì)考查用分類(lèi)討論研究函數(shù)的單調(diào)性以及函數(shù)的零點(diǎn)問(wèn)題
導(dǎo)數(shù)的綜合問(wèn)題是每年的必考內(nèi)容,涉及函數(shù)的極值、最值、單調(diào)性、零點(diǎn)問(wèn)題及不等式的證明,且近3年均考查了不等式的證明.預(yù)計(jì)2019年仍會(huì)考查不等式的證明,同時(shí)要重點(diǎn)關(guān)注會(huì)討論函數(shù)的單調(diào)性及零點(diǎn)問(wèn)題
導(dǎo)數(shù)的綜合問(wèn)題是每年的必考內(nèi)容,涉及函數(shù)的最值、零點(diǎn)、不等式的恒成立及不等式的證明問(wèn)題,其中不等式的證明連續(xù)3年均有考查,應(yīng)引起關(guān)注.預(yù)計(jì)2019年仍會(huì)考查不等式的證明,同時(shí)考查函數(shù)的最值或零點(diǎn)問(wèn)題
橫向
把握
重點(diǎn)
導(dǎo)數(shù)日益成為解決問(wèn)題必不可少的工具,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值(最值)是高考的常見(jiàn)題型,而導(dǎo)數(shù)與函數(shù)、不等式、方程、數(shù)列等的交匯命題,是高考的熱點(diǎn)和難點(diǎn).
解答題的熱點(diǎn)題型有:
(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值;(2)利用導(dǎo)數(shù)證明不等式或探討方程根;
(3)利用導(dǎo)數(shù)求解參數(shù)的范圍或值.
第一課時(shí) “導(dǎo)數(shù)與不等式”考法面面觀
[考法一 不等式的證明問(wèn)題]
題型策略(一)
設(shè)a為實(shí)數(shù),函數(shù)f (x)=ex-2x+2a,x∈R.
(1)求f (x)的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)a>ln 2-1且x>0時(shí),ex>x2-2ax+1.
[破題思路]
第(1)問(wèn)
求什么
想什么
求f (x)的單調(diào)區(qū)間與極值,想到求導(dǎo)函數(shù)f ′(x),然后利用不等式f ′(x)>0及f ′(x)<0求單調(diào)區(qū)間并確定極值
給什么
用什么
已知條件給出f (x)的解析式,可直接用求導(dǎo)公式求導(dǎo)
第(2)問(wèn)
求什么
想什么
證明ex>x2-2ax+1(a>ln 2-1,x>0)成立,想到證明ex-x2+2ax-1>0成立
給什么
用什么
通過(guò)對(duì)第(1)問(wèn)的研究,求得f (x)=ex-2x+2a的單調(diào)性與極值,仔細(xì)觀察,可發(fā)現(xiàn)(ex-x2+2ax-1)′=ex-2x+2a
差什么
找什么
需要研究函數(shù)g(x)=ex-x2+2ax-1的單調(diào)性或最值,利用導(dǎo)數(shù)研究即可
[規(guī)范解答]
(1)由f (x)=ex-2x+2a(x∈R),知f ′(x)=ex-2.令f ′(x)=0,得x=ln 2.
當(dāng)x
ln 2時(shí),f ′(x)>0,故函數(shù)f (x)在區(qū)間(ln 2,+∞)上單調(diào)遞增.
所以f (x)的單調(diào)遞減區(qū)間是(-∞,ln 2),單調(diào)遞增區(qū)間是(ln 2,+∞),f (x)在x=ln 2處取得極小值f (ln 2)=eln 2-2ln 2+2a=2-2ln 2+2a,無(wú)極大值.
(2)證明:要證當(dāng)a>ln 2-1且x>0時(shí),ex>x2-2ax+1,即證當(dāng)a>ln 2-1且x>0時(shí),ex-x2+2ax-1>0.
設(shè)g(x)=ex-x2+2ax-1(x≥0).
則g′(x)=ex-2x+2a,由(1)知g′(x)min=g′(ln 2)=2-2ln 2+2a.
又a>ln 2-1,則g′(x)min>0.
于是對(duì)?x∈R,都有g(shù)′(x)>0,
所以g(x)在R上單調(diào)遞增.
于是對(duì)?x>0,都有g(shù)(x)>g(0)=0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
[題后悟通]
思路
受阻
分析
本題屬于導(dǎo)數(shù)綜合應(yīng)用中較容易的問(wèn)題,解決本題第(2)問(wèn)時(shí),易忽視與第(1)問(wèn)的聯(lián)系,導(dǎo)函數(shù)g′(x)=ex-2x+2a的單調(diào)性已證,可直接用,若意識(shí)不到這一點(diǎn),再判斷g′(x)的單調(diào)性,則造成解題過(guò)程繁瑣,進(jìn)而造成思維受阻或解題失誤
技法
關(guān)鍵
點(diǎn)撥
利用單調(diào)性證明單變量不等式的方法
一般地,要證f (x)>g(x)在區(qū)間(a,b)上成立,需構(gòu)造輔助函數(shù)F(x)=f (x)-g(x),通過(guò)分析F(x)在端點(diǎn)處的函數(shù)值來(lái)證明不等式.若F(a)=0,只需證明F(x)在(a,b)上單調(diào)遞增即可;若F(b)=0,只需證明F(x)在(a,b)上單調(diào)遞減即可
[對(duì)點(diǎn)訓(xùn)練]
1.已知函數(shù)f (x)=xln x,g(x)=λ(x2-1)(λ為常數(shù)).
(1)若曲線y=f (x)與曲線y=g(x)在x=1處有相同的切線,求實(shí)數(shù)λ的值;
(2)若λ=,且x≥1,證明:f (x)≤g(x).
解:(1)f ′(x)=ln x+1,g′(x)=2λx,則f ′(1)=1,
從而g′(1)=2λ=1,即λ=.
(2)證明:設(shè)函數(shù)h(x)=xln x-(x2-1),
則h′(x)=ln x+1-x.
設(shè)p(x)=ln x+1-x,從而p′(x)=-1≤0對(duì)任意x∈[1,+∞)恒成立,
所以當(dāng)x∈[1,+∞)時(shí),p(x)=ln x+1-x≤p(1)=0,
即h′(x)≤0,
因此函數(shù)h(x)=xln x-(x2-1)在[1,+∞)上單調(diào)遞減,
即h(x)≤h(1)=0,
所以當(dāng)λ=,且x≥1時(shí),f (x)≤g(x)成立.
題型策略(二)
已知函數(shù)f (x)=aex-bln x,曲線y=f (x)在點(diǎn)(1,f (1))處的切線方程為y=x+1.
(1)求a,b;
(2)證明:f (x)>0.
[破題思路]
第(1)問(wèn)
求什么想什么
求a,b的值,想到建立關(guān)于a,b的方程組
給什么用什么
題目條件中給出函數(shù)f (x)在點(diǎn)(1,f (1))處的切線方程,可據(jù)此建立關(guān)于a,b的方程組
第(2)問(wèn)
求什么想什么
要證f (x)>0,想到f (x)的最小值大于0
差什么找什么
需求f (x)的最小值,因此只要利用導(dǎo)數(shù)研究函數(shù)f (x)的單調(diào)性即可
[規(guī)范解答]
(1)函數(shù)f (x)的定義域?yàn)?0,+∞).
f ′(x)=aex-,由題意得f (1)=,f ′(1)=-1,
所以解得
(2)證明:由(1)知f (x)=ex-ln x(x>0).
因?yàn)閒 ′(x)=ex-2-在(0,+∞)上單調(diào)遞增,又f ′(1)<0,f ′(2)>0,
所以f ′(x)=0在(0,+∞)上有唯一實(shí)根x0,且x0∈(1,2).
當(dāng)x∈(0,x0)時(shí),f ′(x)<0,當(dāng)x∈(x0,+∞)時(shí),f ′(x)>0,
從而當(dāng)x=x0時(shí),f (x)取極小值,也是最小值.
由f ′(x0)=0,得ex0-2=,
則x0-2=-ln x0.
故f (x)≥f (x0)=e x0-2-ln x0=+x0-2>2 -2=0,所以f (x)>0.
[題后悟通]
思路
受阻
分析
本題屬于隱零點(diǎn)問(wèn)題.解決第(2)問(wèn)時(shí),常因以下兩個(gè)原因造成思維受阻,無(wú)法正常解題.
(1)f ′(x)=0在(0,+∞)上有解,但無(wú)法解出;
(2)設(shè)出f ′(x)=0的零點(diǎn)x0,即f (x)的最小值為f (x0),但是不能將函數(shù)f (x0)轉(zhuǎn)化成可求最值的式子,從而無(wú)法將問(wèn)題解決.
當(dāng)遇到既含有指數(shù)式,又含有對(duì)數(shù)式的代數(shù)式需判斷其符號(hào)時(shí),常需應(yīng)用這種技巧,把含有指數(shù)式與對(duì)數(shù)式的代數(shù)式轉(zhuǎn)化為不含有指數(shù)式與對(duì)數(shù)式的代數(shù)式,從而可輕松判斷其符號(hào)
技法
關(guān)鍵
點(diǎn)撥
利用最值證明單變量不等式的技巧
利用最值證明單變量的不等式的常見(jiàn)形式是f (x)>g(x).證明技巧:先將不等式f (x)>g(x)移項(xiàng),即構(gòu)造函數(shù)h(x)=f (x)-g(x),轉(zhuǎn)化為證不等式h(x)>0,再次轉(zhuǎn)化為證明h(x)min>0,因此,只需在所給的區(qū)間內(nèi),判斷h′(x)的符號(hào),從而判斷其單調(diào)性,并求出函數(shù)h(x)的最小值,即可得證
[對(duì)點(diǎn)訓(xùn)練]
2.已知函數(shù)f (x)=.
(1)若f (x)在區(qū)間(-∞,2]上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f(x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
解:(1)易得f ′(x)=-,
由題意知f ′(x)≥0對(duì)x∈(-∞,2]恒成立,
故x≤1-a對(duì)x∈(-∞,2]恒成立,
∴1-a≥2,∴a≤-1.
故實(shí)數(shù)a的取值范圍為(-∞,-1].
(2)證明:若a=0,則f (x)=.
函數(shù)f (x)的圖象在x=x0處的切線方程為y=g(x)=f ′(x0)(x-x0)+f (x0).
令h(x)=f (x)-g(x)=f (x)-f ′(x0)(x-x0)-f (x0),x∈R,
則h′(x)=f ′(x)-f ′(x0)
=-
=.
設(shè)φ(x)=(1-x)ex0-(1-x0)ex,x∈R,
則φ′(x)=-ex0-(1-x0)ex.
∵x0<1,
∴φ′(x)<0,
∴φ(x)在R上單調(diào)遞減,而φ(x0)=0,
∴當(dāng)x<x0時(shí),φ(x)>0,當(dāng)x>x0時(shí),φ(x)<0,
∴當(dāng)x<x0時(shí),h′(x)>0,當(dāng)x>x0時(shí),h′(x)<0,
∴h(x)在區(qū)間(-∞,x0)上為增函數(shù),在區(qū)間(x0,+∞)上為減函數(shù),
∴x∈R時(shí),h(x)≤h(x0)=0,
∴f (x)≤g(x).
構(gòu)造函數(shù)證明雙變量函數(shù)不等式
若b>a>0,求證:ln b-ln a>.
[破題思路]
證明:ln b-ln a>,想到如下思路:
(1)構(gòu)造以a為主元的函數(shù),利用導(dǎo)數(shù)求解.
(2)考慮到ln b-ln a=ln ,=,設(shè)t=,化為只有一個(gè)因變量t的函數(shù)求解.
(3)原不等式右邊可分開(kāi)寫(xiě),觀察此式兩邊,發(fā)現(xiàn)其與f (x)=ln x-有關(guān),故先研究f (x)的單調(diào)性,從而得解.
[規(guī)范解答]
法一:主元法(學(xué)生用書(shū)不提供解題過(guò)程)
構(gòu)造函數(shù)f (x)=ln b-ln x-,
其中0a>0,故f (a)>f (b)=0,即ln b-ln a>.
法二:整體換元法(學(xué)生用書(shū)不提供解題過(guò)程)
令=t(t>1),構(gòu)造函數(shù)f (t)=ln t-,則f ′(t)=+==.
∵t>1,∴t2-1>0,t2+2t-1>12+2-1>0,則f ′(t)>0,∴f (t)在(1,+∞)上單調(diào)遞增,故f (t)>f (1)=0,即ln ->0,從而有l(wèi)n b-ln a>.
法三:函數(shù)不等式的對(duì)稱(chēng)性(學(xué)生用書(shū)提供解題過(guò)程)
原不等式可化為ln b->ln a-,
則構(gòu)造函數(shù)f (x)=ln x-(b≥x>a>0),則f ′(x)=->-=0,∴f (x)=ln x-在(a,b)上單調(diào)遞增,即f (b)>f (a),則ln b->ln a-,故ln b-ln a>.
[題后悟通]
思路
受阻
分析
由于題目條件少,不能正確分析要證不等式的特點(diǎn),并構(gòu)造相應(yīng)的函數(shù)將問(wèn)題轉(zhuǎn)化,從而導(dǎo)致無(wú)從下手解決問(wèn)題
技法
關(guān)鍵
點(diǎn)撥
證明雙變量函數(shù)不等式的常見(jiàn)思路
(1)將雙變量中的一個(gè)看作變量,另一個(gè)看作常數(shù),構(gòu)造一個(gè)含參數(shù)的輔助函數(shù)證明不等式.
(2)整體換元.對(duì)于齊次式往往可將雙變量整體換元,化為一元不等式.
(3)若雙變量的函數(shù)不等式具有對(duì)稱(chēng)性,并且可以將兩個(gè)變量分離開(kāi),分離之后的函數(shù)結(jié)構(gòu)具有相似性,從而構(gòu)造函數(shù)利用單調(diào)性證明
[對(duì)點(diǎn)訓(xùn)練]
3.(2019屆高三黃岡模擬)已知函數(shù)f (x)=λln x-e-x(λ∈R).
(1)若函數(shù)f (x)是單調(diào)函數(shù),求λ的取值范圍;
(2)求證:當(dāng)01-.
解:(1)函數(shù)f (x)的定義域?yàn)?0,+∞),
∵f (x)=λln x-e-x,
∴f ′(x)=+e-x=,
∵函數(shù)f (x)是單調(diào)函數(shù),
∴f ′(x)≤0或f ′(x)≥0在(0,+∞)上恒成立,
①當(dāng)函數(shù)f (x)是單調(diào)遞減函數(shù)時(shí),f ′(x)≤0,
∴≤0,即λ+xe-x≤0,λ≤-xe-x=-,
令φ(x)=-,則φ′(x)=,
當(dāng)01時(shí),φ′(x)>0,
則φ(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴當(dāng)x>0時(shí),φ(x)min=φ(1)=-,∴λ≤-.
②當(dāng)函數(shù)f (x)是單調(diào)遞增函數(shù)時(shí),f ′(x)≥0,
∴≥0,即λ+xe-x≥0,λ≥-xe-x=-,
由①得φ(x)=-在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,又φ(0)=0,x→+∞時(shí),φ(x)<0,∴λ≥0.
綜上,λ的取值范圍是∪[0,+∞).
(2)證明:由(1)可知,當(dāng)λ=-時(shí),f (x)=-ln x-e-x在(0,+∞)上單調(diào)遞減,
∵0f (x2),
即-ln x1-e-x1>-ln x2-e-x2,
∴e1-x2-e1-x1>ln x1-ln x2.
要證e1-x2-e1-x1>1-,
只需證ln x1-ln x2>1-,
即證ln>1-,
令t=,t∈(0,1),則只需證ln t>1-,
令h(t)=ln t+-1,則h′(t)=-=,
當(dāng)00,即ln t>1-,故原不等式得證.
[考法二 恒成立與能成立問(wèn)題]
題型策略(一)
已知函數(shù)f (x)=xln x,若對(duì)于所有x≥1都有f (x)≥ax-1,求實(shí)數(shù)a的取值范圍.
[破題思路]
求什么
想什么
求實(shí)數(shù)a的取值范圍,想到建立關(guān)于實(shí)數(shù)a的不等式
給什么
用什么
題目條件中,已知f (x)≥ax-1,即xln x≥ax-1,想到將不等式轉(zhuǎn)化為xln x-ax+1≥0或a≤ln x+
差什么
找什么
缺少xln x-ax+1的最小值或ln x+的最小值,利用導(dǎo)數(shù)求解即可
[規(guī)范解答]
法一:分離參數(shù)法(學(xué)生用書(shū)不提供解題過(guò)程)
依題意,得f (x)≥ax-1在[1,+∞)上恒成立,即不等式a≤ln x+在x∈[1,+∞)恒成立,亦即a≤min,x∈[1,+∞).
設(shè)g(x)=ln x+(x≥1),則g′(x)=-=.
令g′(x)=0,得x=1.
當(dāng)x≥1時(shí),因?yàn)間′(x)≥0,
故g(x)在[1,+∞)上是增函數(shù).
所以g(x)在[1,+∞)上的最小值是g(1)=1.
故a的取值范圍是(-∞,1].
法二:構(gòu)造函數(shù)法(學(xué)生用書(shū)提供解題過(guò)程)
當(dāng)x=1時(shí),有f (1)≥a-1,即a-1≤0,得a≤1.
構(gòu)造F(x)=f (x)-(ax-1)=xln x-ax+1,
原命題等價(jià)于F(x)≥0在x≥1上恒成立?F(x)min≥0,x∈[1,+∞).
由于F′(x)=ln x+1-a≥0在x∈[1,+∞)上恒成立,因此,函數(shù)F(x)在[1,+∞)上單調(diào)遞增,所以F(x)min=F(1)=1-a≥0,得a≤1.故a的取值范圍是(-∞,1].
[題后悟通]
(一)思路受阻分析
求解本題時(shí),直接作差構(gòu)造函數(shù)或分離參數(shù)后構(gòu)造函數(shù)求a的取值范圍,其關(guān)鍵是正確求解所構(gòu)造函數(shù)的最值,這也是大多數(shù)同學(xué)不會(huì)求解或不能正確求解最值而導(dǎo)致無(wú)法繼續(xù)解題或解題失誤的地方.
(二)技法關(guān)鍵點(diǎn)撥
分離參數(shù)法解含參不等式恒成立問(wèn)題的思路與關(guān)鍵
(1)分離參數(shù)法解含參不等式恒成立問(wèn)題的思路
用分離參數(shù)法解含參不等式恒成立問(wèn)題是指在能夠判斷出參數(shù)的系數(shù)的正負(fù)的情況下,可以根據(jù)不等式的性質(zhì)將參數(shù)分離出來(lái),得到一個(gè)一端是參數(shù),另一端是變量表達(dá)式的不等式,只要研究變量表達(dá)式的最值就可以解決問(wèn)題.
(2)求解含參不等式恒成立問(wèn)題的關(guān)鍵是過(guò)好“雙關(guān)”
轉(zhuǎn)化關(guān)
通過(guò)分離參數(shù)法,先轉(zhuǎn)化為f (a)≥g(x)(或f (a)≤g(x))對(duì)?x∈D恒成立,再轉(zhuǎn)化為f (a)≥g(x)max(或f (a)≤g(x)min)
求最值關(guān)
求函數(shù)g(x)在區(qū)間D上的最大值(或最小值)問(wèn)題
(三)解題細(xì)節(jié)提醒
有些含參不等式恒成立問(wèn)題,在分離參數(shù)時(shí)會(huì)遇到討論的麻煩,或者即使分離出參數(shù),但參數(shù)的最值卻難以求出,這時(shí)常利用導(dǎo)數(shù)法,借助導(dǎo)數(shù),分析函數(shù)的單調(diào)性,通過(guò)對(duì)函數(shù)單調(diào)性的分析確定函數(shù)值的變化情況,找到參數(shù)滿(mǎn)足的不等式,往往能取得意想不到的效果.
[對(duì)點(diǎn)訓(xùn)練]
1.設(shè)函數(shù)f (x)=ax2-a-ln x,其中a∈R.
(1)討論f (x)的單調(diào)性;
(2)確定a的所有可能取值,使得f (x)>-e1-x在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù)).
解:(1)由題意,f ′(x)=2ax-=,x>0,
①當(dāng)a≤0時(shí),
2ax2-1≤0,f ′(x)≤0,f (x)在(0,+∞)上單調(diào)遞減.
②當(dāng)a>0時(shí),f ′(x)=,
當(dāng)x∈時(shí),f ′(x)<0;當(dāng)x∈時(shí),f ′(x)>0.
故f (x)在上單調(diào)遞減,在上單調(diào)遞增.
綜上所述,當(dāng)a≤0時(shí),f (x)在(0,+∞)上單調(diào)遞減;當(dāng)a>0時(shí),f (x)在上單調(diào)遞減,在上單調(diào)遞增.
(2)原不等式等價(jià)于f (x)-+e1-x>0在(1,+∞)上恒成立.
一方面,令g(x)=f (x)-+e1-x=ax2-ln x-+e1-x-a,
只需g(x)在(1,+∞)上恒大于0即可.
又g(1)=0,故g′(x)在x=1處必大于等于0.
令F(x)=g′(x)=2ax-+-e1-x,
由g′(1)≥0,可得a≥.
另一方面,當(dāng)a≥時(shí),
F′(x)=2a+-+e1-x≥1+-+e1-x=+e1-x,
因?yàn)閤∈(1,+∞),故x3+x-2>0.又e1-x>0,
故F′(x)在a≥時(shí)恒大于0.
所以當(dāng)a≥時(shí),F(xiàn)(x)在(1,+∞)上單調(diào)遞增.
所以F(x)>F(1)=2a-1≥0,
故g(x)也在(1,+∞)上單調(diào)遞增.
所以g(x)>g(1)=0,
即g(x)在(1,+∞)上恒大于0.
綜上所述,a≥.
故實(shí)數(shù)a的取值范圍為.
題型策略(二)
已知函數(shù)f (x)=x-aln x,g(x)=-(a∈R).若在[1,e]上存在一點(diǎn)x0,使得f (x0)2,x∈(0,e-1)與h(x)<0不符,故舍去.
③若a+1≥e,即a≥e-1時(shí),h(x)在[1,e]上單調(diào)遞減,則h(x)min=h(e)=e-a+,
令h(e)<0,得a>>e-1成立.
綜上所述,a的取值范圍為(-∞,-2)∪.
[題后悟通]
思路
受阻
分析
本題構(gòu)造函數(shù)后,求解a的取值范圍時(shí),需對(duì)a分類(lèi)討論.此處往往因不會(huì)分類(lèi)討論或討論不全而導(dǎo)致解題失誤
技法
關(guān)鍵
點(diǎn)撥
不等式能成立問(wèn)題的解題關(guān)鍵點(diǎn)
[對(duì)點(diǎn)訓(xùn)練]
2.(2019屆高三河北“五個(gè)一名校聯(lián)盟”模擬)已知a為實(shí)數(shù),函數(shù)f (x)=aln x+x2-4x.
(1)若x=3是函數(shù)f (x)的一個(gè)極值點(diǎn),求實(shí)數(shù)a的值;
(2)設(shè)g(x)=(a-2)x,若存在x0∈,使得f (x0)≤g(x0)成立,求實(shí)數(shù)a的取值范圍.
解:(1)函數(shù)f (x)的定義域?yàn)?0,+∞),
f ′(x)=+2x-4=.
∵x=3是函數(shù)f (x)的一個(gè)極值點(diǎn),
∴f ′(3)=0,解得a=-6.
經(jīng)檢驗(yàn),當(dāng)a=-6時(shí),x=3是函數(shù)f (x)的一個(gè)極小值點(diǎn),符合題意,故a=-6.
(2)由f (x0)≤g(x0),得(x0-ln x0)a≥x-2x0,
記F(x)=x-ln x(x>0),則F′(x)=(x>0),
∴當(dāng)01時(shí),F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增.
∴F(x)>F(1)=1>0,∴a≥.
記G(x)=,x∈,
則G′(x)=
=.
∵x∈,∴2-2ln x=2(1-ln x)≥0,
∴x-2ln x+2>0,
∴當(dāng)x∈時(shí),G′(x)<0,G(x)單調(diào)遞減;當(dāng)x∈(1,e)時(shí),G′(x)>0,G(x)單調(diào)遞增.
∴G(x)min=G(1)=-1,∴a≥G(x)min=-1,
故實(shí)數(shù)a的取值范圍為[-1,+∞).
題型策略(三)
已知函數(shù)f (x)=ln x-mx,g(x)=x-(a>0).
(1)求函數(shù)f (x)的單調(diào)區(qū)間;
(2)若m=,對(duì)?x1,x2∈[2,2e2]都有g(shù)(x1)≥f (x2)成立,求實(shí)數(shù)a的取值范圍.
[破題思路]
第(1)問(wèn)
求什么想什么
求f (x)的單調(diào)區(qū)間,想到解不等式f ′(x)>0或f ′(x)<0
給什么用什么
題目條件中已給出f (x)的解析式,直接求導(dǎo)然后分類(lèi)討論參數(shù)m即可
第(2)問(wèn)
求什么想什么
求a的取值范圍,想到建立a的不等式
給什么用什么
給出g(x1)≥f (x2)對(duì)?x1,x2∈[2,2e2]都成立,用此不等式建立關(guān)于a的不等式
差什么找什么
缺少f (x)與g(x)的最值,利用導(dǎo)數(shù)求解
[規(guī)范解答]
(1)因?yàn)閒 (x)=ln x-mx,x>0,
所以f ′(x)=-m,
當(dāng)m≤0時(shí),f ′(x)>0,f (x)在(0,+∞)上單調(diào)遞增.
當(dāng)m>0時(shí),由f ′(x)=0得x=;
由得0.
所以f (x)在上單調(diào)遞增,在上單調(diào)遞減.
綜上所述,當(dāng)m≤0時(shí),f (x)的單調(diào)遞增區(qū)間為(0,+∞),無(wú)單調(diào)遞減區(qū)間;
當(dāng)m>0時(shí),f (x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)若m=,則f (x)=ln x-x.
對(duì)?x1,x2∈[2,2e2]都有g(shù)(x1)≥f (x2)成立,
等價(jià)于對(duì)?x∈[2,2e2]都有g(shù)(x)min≥f (x)max,
由(1)知在[2,2e2]上f (x)的最大值為f (e2)=,
又g′(x)=1+>0(a>0),x∈[2,2e2],所以函數(shù)g(x)在[2,2e2]上是增函數(shù),所以g(x)min=g(2)=2-.
由2-≥,得a≤3,又a>0,所以a∈(0,3],
所以實(shí)數(shù)a的取值范圍為(0,3].
[題后悟通]
(一)思路受阻分析
本題(2)中不會(huì)或不能準(zhǔn)確地將已知條件“?x1,x2∈[2,2e2]都有g(shù)(x1)≥f (x2)成立”進(jìn)行轉(zhuǎn)化,而導(dǎo)致無(wú)法求解此題.
(二)技法關(guān)鍵點(diǎn)撥
1.最值定位法解雙參不等式恒成立問(wèn)題的思路策略
(1)用最值定位法解雙參不等式恒成立問(wèn)題是指通過(guò)不等式兩端的最值進(jìn)行定位,轉(zhuǎn)化為不等式兩端函數(shù)的最值之間的不等式,列出參數(shù)所滿(mǎn)足的不等式,從而求解參數(shù)的取值范圍.
(2)有關(guān)兩個(gè)函數(shù)在各自指定范圍內(nèi)的不等式恒成立問(wèn)題,這里兩個(gè)函數(shù)在指定范圍內(nèi)的自變量是沒(méi)有關(guān)聯(lián)的,這類(lèi)不等式的恒成立問(wèn)題就應(yīng)該通過(guò)最值進(jìn)行定位,對(duì)于任意的x1∈[a,b],x2∈[m,n],不等式f (x1)≥g(x2)恒成立,等價(jià)于f (x)min(x∈[a,b])≥g(x)max(x∈[m,n]),列出參數(shù)所滿(mǎn)足的不等式,便可求出參數(shù)的取值范圍.
2.常見(jiàn)的雙變量不等式恒成立問(wèn)題的類(lèi)型
(1)對(duì)于任意的x1∈[a,b],總存在x2∈[m,n],使得f (x1)≤g(x2)?f (x1)max≤g(x2)max.
(2)對(duì)于任意的x1∈[a,b],總存在x2∈[m,n],使得f (x1)≥g(x2)?f (x1)min≥g(x2)min.
(3)若存在x1∈[a,b],對(duì)任意的x2∈[m,n],使得f (x1)≤g(x2)?f (x1)min≤g(x2)min.
(4)若存在x1∈[a,b],對(duì)任意的x2∈[m,n],使得f (x1)≥g(x2)?f (x1)max≥g(x2)max.
(5)對(duì)于任意的x1∈[a,b],x2∈[m,n],使得f (x1)≤g(x2)?f (x1)max≤g(x2)min.
(6)對(duì)于任意的x1∈[a,b],x2∈[m,n],使得f (x1)≥g(x2)?f (x1)min≥g(x2)max.
[對(duì)點(diǎn)訓(xùn)練]
3.已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g(x)=x2+ex-xex.
(1)當(dāng)x∈[1,e]時(shí),求f (x)的最小值;
(2)當(dāng)a<1時(shí),若存在x1∈[e,e2],使得對(duì)任意的x2∈[-2,0],f (x1),所以a的取值范圍為.
[專(zhuān)題跟蹤檢測(cè)](對(duì)應(yīng)配套卷P171)
1.(2019屆高三唐山模擬)已知f (x)=x2-a2ln x,a>0.
(1)求函數(shù)f (x)的最小值;
(2)當(dāng)x>2a時(shí),證明:>a.
解:(1)函數(shù)f (x)的定義域?yàn)?0,+∞),
f ′(x)=x-=.
當(dāng)x∈(0,a)時(shí),f ′(x)<0,f (x)單調(diào)遞減;
當(dāng)x∈(a,+∞)時(shí),f ′(x)>0,f (x)單調(diào)遞增.
所以當(dāng)x=a時(shí),f (x)取得極小值,也是最小值,且f (a)=a2-a2ln a.
(2)證明:由(1)知,f (x)在(2a,+∞)上單調(diào)遞增,
則所證不等式等價(jià)于f (x)-f (2a)-a(x-2a)>0.
設(shè)g(x)=f (x)-f (2a)-a(x-2a),
則當(dāng)x>2a時(shí),
g′(x)=f ′(x)-a=x--a
=>0,
所以g(x)在(2a,+∞)上單調(diào)遞增,
當(dāng)x>2a時(shí),g(x)>g(2a)=0,
即f (x)-f (2a)-a(x-2a)>0,
故>a.
2.已知函數(shù)f (x)=xex+2x+aln x,曲線y=f (x)在點(diǎn)P(1,f (1))處的切線與直線x+2y-1=0垂直.
(1)求實(shí)數(shù)a的值;
(2)求證:f (x)>x2+2.
解:(1)因?yàn)閒 ′(x)=(x+1)ex+2+,
所以曲線y=f (x)在點(diǎn)P(1,f (1))處的切線斜率k=f ′(1)=2e+2+a.
而直線x+2y-1=0的斜率為-,
由題意可得(2e+2+a)=-1,
解得a=-2e.
(2)證明:由(1)知,f (x)=xex+2x-2eln x.
不等式f (x)>x2+2可化為xex+2x-2eln x-x2-2>0.
設(shè)g(x)=xex+2x-2eln x-x2-2,
則g′(x)=(x+1)ex+2--2x.
記h(x)=(x+1)ex+2--2x(x>0),
則h′(x)=(x+2)ex+-2,
因?yàn)閤>0,所以x+2>2,ex>1,故(x+2)ex>2,
又>0,所以h′(x)=(x+2)ex+-2>0,
所以函數(shù)h(x)在(0,+∞)上單調(diào)遞增.
又h(1)=2e+2-2e-2=0,
所以當(dāng)x∈(0,1)時(shí),h(x)<0,即g′(x)<0,函數(shù)g(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),h(x)>0,即g′(x)>0,函數(shù)g(x)單調(diào)遞增.
所以g(x)≥g(1)=e+2-2eln 1-1-2=e-1,
顯然e-1>0,
所以g(x)>0,即xex+2x-2eln x>x2+2,也就是f (x)>x2+2.
3.(2018武漢模擬)設(shè)函數(shù)f (x)=(1+x-x2)ex(e=2.718 28…是自然對(duì)數(shù)的底數(shù)).
(1)討論f (x)的單調(diào)性;
(2)當(dāng)x≥0時(shí),f (x)≤ax+1+2x2恒成立,求實(shí)數(shù)a的取值范圍.
解:(1)f ′(x)=(2-x-x2)ex=-(x+2)(x-1)ex.
當(dāng)x<-2或x>1時(shí),f ′(x)<0;當(dāng)-20.
所以f (x)在(-∞,-2),(1,+∞)上單調(diào)遞減,在(-2,1)上單調(diào)遞增.
(2)設(shè)F(x)=f (x)-(ax+1+2x2),F(xiàn)(0)=0,
F′(x)=(2-x-x2)ex-4x-a,F(xiàn)′(0)=2-a,
當(dāng)a≥2時(shí),F(xiàn)′(x)=(2-x-x2)ex-4x-a≤-(x+2)(x-1)ex-4x-2≤-(x+2)(x-1)ex-x-2=-(x+2)[(x-1)ex+1],
設(shè)h(x)=(x-1)ex+1,h′(x)=xex≥0,所以h(x)在[0,+∞)上單調(diào)遞增,h(x)=(x-1)ex+1≥h(0)=0,
即F′(x)≤0在[0,+∞)上恒成立,F(xiàn)(x)在[0,+∞)上單調(diào)遞減,F(xiàn)(x)≤F(0)=0,所以f (x)≤ax+1+2x2在[0,+∞)上恒成立.
當(dāng)a<2時(shí),F(xiàn)′(0)=2-a>0,而函數(shù)F′(x)的圖象在(0,+∞)上連續(xù)且x→+∞,F(xiàn)′(x)逐漸趨近負(fù)無(wú)窮,必存在正實(shí)數(shù)x0使得F′(x0)=0且在(0,x0)上F′(x)>0,所以F(x)在(0,x0)上單調(diào)遞增,此時(shí)F(x)>F(0)=0,f (x)>ax+1+2x2有解,不滿(mǎn)足題意.
綜上,a的取值范圍是[2,+∞).
4.(2018南昌模擬)設(shè)函數(shù)f (x)=2ln x-mx2+1.
(1)討論函數(shù)f (x)的單調(diào)性;
(2)當(dāng)f (x)有極值時(shí),若存在x0,使得f (x0)>m-1成立,求實(shí)數(shù)m的取值范圍.
解:(1)函數(shù)f (x)的定義域?yàn)?0,+∞),
f ′(x)=-2mx=,
當(dāng)m≤0時(shí),f ′(x)>0,∴f (x)在(0,+∞)上單調(diào)遞增;
當(dāng)m>0時(shí),令f ′(x)>0,得0,
∴f (x)在上單調(diào)遞增,在上單調(diào)遞減.
(2)由(1)知,當(dāng)f (x)有極值時(shí),m>0,且f (x)在上單調(diào)遞增,在上單調(diào)遞減.
∴f (x)max=f =2ln-m+1=-ln m,
若存在x0,使得f (x0)>m-1成立,則f (x)max>m-1.
即-ln m>m-1,ln m+m-1<0成立.
令g(x)=x+ln x-1(x>0),
∵g′(x)=1+>0,∴g(x)在(0,+∞)上單調(diào)遞增,且g(1)=0,∴00時(shí),對(duì)任意的x∈,恒有f (x)≤e-1成立,求實(shí)數(shù)b的取值范圍.
解:(1)函數(shù)f (x)的定義域?yàn)?0,+∞).
當(dāng)b=2時(shí),f (x)=aln x+x2,
所以f ′(x)=+2x=.
①當(dāng)a>0時(shí),f ′(x)>0,所以函數(shù)f (x)在(0,+∞)上單調(diào)遞增.
②當(dāng)a<0時(shí),令f ′(x)=0,解得x= (負(fù)值舍去),
當(dāng)0時(shí),f ′(x)>0,所以函數(shù)f (x)在上單調(diào)遞增.
綜上所述,當(dāng)b=2,a>0時(shí),函數(shù)f (x)在(0,+∞)上單調(diào)遞增;
當(dāng)b=2,a<0時(shí),函數(shù)f (x)在上單調(diào)遞減,在上單調(diào)遞增.
(2)因?yàn)閷?duì)任意的x∈,恒有f (x)≤e-1成立,
所以當(dāng)x∈時(shí),f (x)max≤e-1.
當(dāng)a+b=0,b>0時(shí),f (x)=-bln x+xb,f ′(x)=-+bxb-1=.
令f ′(x)<0,得00,得x>1.
所以函數(shù)f (x)在上單調(diào)遞減,在(1,e]上單調(diào)遞增,f (x)max為f =b+e-b與f (e)=-b+eb中的較大者.
f (e)-f =eb-e-b-2b.
令g(m)=em-e-m-2m(m>0),
則當(dāng)m>0時(shí),g′(m)=em+e-m-2>2-2=0,
所以g(m)在(0,+∞)上單調(diào)遞增,故g(m)>g(0)=0,所以f (e)>f ,從而f (x)max=f (e)=-b+eb
所以-b+eb≤e-1,即eb-b-e+1≤0.
設(shè)φ(t)=et-t-e+1(t>0),則φ′(t)=et-1>0,
所以φ(t)在(0,+∞)上單調(diào)遞增.
又φ(1)=0,所以eb-b-e+1≤0的解集為(0,1].
所以b的取值范圍為(0,1].
6.(2018開(kāi)封模擬)已知函數(shù)f (x)=ax+x2-xln a(a>0,a≠1).
(1)當(dāng)a=e(e是自然對(duì)數(shù)的底數(shù))時(shí),求函數(shù)f (x)的單調(diào)區(qū)間;
(2)若存在x1,x2∈[-1,1],使得|f (x1)-f (x2)|≥e-1,求實(shí)數(shù)a的取值范圍.
解:(1)f ′(x)=axln a+2x-ln a=2x+(ax-1)ln a.
當(dāng)a=e時(shí),f ′(x)=2x+ex-1,其在R上是增函數(shù),
又f ′(0)=0,∴f ′(x)>0的解集為(0,+∞),f ′(x)<0的解集為(-∞,0),故函數(shù)f (x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間為(-∞,0).
(2)∵存在x1,x2∈[-1,1],使得|f (x1)-f (x2)|≥e-1,
又當(dāng)x1,x2∈[-1,1]時(shí),|f (x1)-f (x2)|≤f (x)max-f (x)min,
∴只要f (x)max-f (x)min≥e-1即可.
∵當(dāng)a>1時(shí),ln a>0,y=(ax-1)ln a在R上是增函數(shù),
當(dāng)01或00),
∴g′(a)=1+-=2≥0,
∴g(a)=a--2ln a在(0,+∞)上是增函數(shù).
而g(1)=0,故當(dāng)a>1時(shí),g(a)>0,即f (1)>f (-1);
當(dāng)01時(shí),f (x)max-f (x)min=f (1)-f (0)≥e-1,即a-ln a≥e-1,
函數(shù)y=a-ln a在(1,+∞)上是增函數(shù),解得a≥e;
當(dāng)0
下載提示(請(qǐng)認(rèn)真閱讀)
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎(jiǎng)勵(lì)!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
通用版2019版高考數(shù)學(xué)二輪復(fù)習(xí)
第一部分
專(zhuān)題四
導(dǎo)數(shù)的綜合應(yīng)用第一課時(shí)“導(dǎo)數(shù)與不等式”考法面面觀講義
理重點(diǎn)生,含解析
通用版
2019
高考
數(shù)學(xué)
二輪
復(fù)習(xí)
第一
部分
專(zhuān)題
導(dǎo)數(shù)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶(hù)自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶(hù)書(shū)面授權(quán),請(qǐng)勿作他用。
鏈接地址:http://m.kudomayuko.com/p-6165926.html