新版江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)4 解析幾何中的范圍、定值和探索性問(wèn)題 Word版含答案

上傳人:無(wú)*** 文檔編號(hào):61751910 上傳時(shí)間:2022-03-12 格式:DOC 頁(yè)數(shù):7 大?。?57KB
收藏 版權(quán)申訴 舉報(bào) 下載
新版江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)4 解析幾何中的范圍、定值和探索性問(wèn)題 Word版含答案_第1頁(yè)
第1頁(yè) / 共7頁(yè)
新版江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)4 解析幾何中的范圍、定值和探索性問(wèn)題 Word版含答案_第2頁(yè)
第2頁(yè) / 共7頁(yè)
新版江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)4 解析幾何中的范圍、定值和探索性問(wèn)題 Word版含答案_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新版江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)4 解析幾何中的范圍、定值和探索性問(wèn)題 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書(shū):第2部分 八大難點(diǎn)突破 難點(diǎn)4 解析幾何中的范圍、定值和探索性問(wèn)題 Word版含答案(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 新版-□□新版數(shù)學(xué)高考復(fù)習(xí)資料□□-新版 1

2、 1 難點(diǎn)四  解析幾何中的范圍、定值和探索性問(wèn)題 (對(duì)應(yīng)學(xué)生用書(shū)第68頁(yè)) 解析幾何中的范圍、定值和探索性問(wèn)題仍是高考考試的重點(diǎn)與難點(diǎn),主要以解答題形式考查,一般以橢圓為背景,考查范圍、定值和探索性問(wèn)題,試題難度較大.復(fù)習(xí)時(shí)不能把目標(biāo)僅僅定位在知識(shí)的掌握上,要在解題方法、解題思想上深入下去.解析幾何中基本的解題方法是使用代數(shù)方程的

3、方法研究直線、曲線的某些幾何性質(zhì),代數(shù)方程是解題的橋梁,要掌握一些解方程(組)的方法,掌握一元二次方程的知識(shí)在解析幾何中的應(yīng)用,掌握使用根與系數(shù)的關(guān)系進(jìn)行整體代入的解題方法;其次注意分類(lèi)討論思想、函數(shù)與方程思想、化歸與轉(zhuǎn)化思想等的應(yīng)用,如解析幾何中的最值問(wèn)題往往需建立求解目標(biāo)函數(shù),通過(guò)函數(shù)的最值研究幾何中的最值.下面對(duì)這些難點(diǎn)一一分析: 1.圓錐曲線中的定點(diǎn)、定值問(wèn)題 該類(lèi)問(wèn)題多以直線與圓錐曲線為背景,常與函數(shù)與方程、向量等知識(shí)交匯,形成了過(guò)定點(diǎn)、定值等問(wèn)題的證明,難度較大.定點(diǎn)、定值問(wèn)題是在變化中所表現(xiàn)出來(lái)的不變的量,那么就可以用變化的量表示問(wèn)題的直線方程、數(shù)量積、比例關(guān)系等,這些直線方

4、程、數(shù)量積、比例關(guān)系不受變化的量所影響的一個(gè)點(diǎn)、一個(gè)值,就是要求的定點(diǎn)、定值.化解這類(lèi)問(wèn)題的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量. 【例1】 (20xx·江蘇省南京市迎一模模擬)設(shè)橢圓C:+=1(a>b>0)的離心率e=,直線y=x+與以原點(diǎn)為圓心、橢圓C的短半軸長(zhǎng)為半徑的圓O相切. (1)求橢圓C的方程; (2)設(shè)直線x=與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓D,若圓D與y軸相交于不同的兩點(diǎn)A,B,求△ABD的面積; (3)如圖1,A1,A2,B1,B2是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意點(diǎn),直線B2

5、P交x軸于點(diǎn)F,直線A1B2交A2P于點(diǎn)E,設(shè)A2P的斜率為k,EF的斜率為m,求證:2m-k為定值. 【導(dǎo)學(xué)號(hào):56394098】 圖1 [解] (1)∵直線y=x+與以原點(diǎn)為圓心、橢圓C的短半軸長(zhǎng)為半徑的圓O相切, ∴=b,化為b=1. ∵離心率e==,b2=a2-c2=1,聯(lián)立解得a=2,c=. ∴橢圓C的方程為+y2=1; (2)把x=代入橢圓方程可得:y2=1-,解得y=±. ∴⊙D的方程為:2+y2=. 令x=0,解得y=±, ∴|AB|=,∴S△ABD=|AB|·|OD|=××=. (3)證明:由(1)知:A1(-2,0),A2(2,0),B2(0,1

6、), ∴直線A1B2的方程為y=x+1, 由題意,直線A2P的方程為y=k(x-2),k≠0,且k≠±, 由解得E. 設(shè)P(x1,y1),則由得(4k2+1)x2-16k2x+16k2-4=0. ∴2x1=,∴x1=,y1=k(x1-2)=. ∴P. 設(shè)F(x2,0),則由P,B2,F(xiàn)三點(diǎn)共線得,kB2P=kB2F. 即=,∴x2=,∴F. ∴EF的斜率m==. ∴2m-k=-k=為定值. [方法總結(jié)] 定值問(wèn)題是解析幾何中的一種常見(jiàn)問(wèn)題,基本的求解思想是:先用變量表示所需證明的不變量,然后通過(guò)推導(dǎo)和已知條件,消去變量,得到定值,即解決定值問(wèn)題首先是求解非定值問(wèn)題,即變量

7、問(wèn)題,最后才是定值問(wèn)題. (1)求定值問(wèn)題常見(jiàn)的方法有兩種 ①?gòu)奶厥馊胧郑蟪龆ㄖ?,再證明這個(gè)值與變量無(wú)關(guān). ②直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值. (2)定點(diǎn)的探索與證明問(wèn)題 ①探索直線過(guò)定點(diǎn)時(shí),可設(shè)出直線方程為y=kx+m,然后利用條件建立k,m等量關(guān)系進(jìn)行消元,借助于直線系的思想找出定點(diǎn). ②從特殊情況入手,先探求定點(diǎn),再證明與變量無(wú)關(guān). 2.圓錐曲線中的最值、范圍問(wèn)題 圓錐曲線中參數(shù)的范圍及最值問(wèn)題,由于其能很好地考查學(xué)生對(duì)數(shù)學(xué)知識(shí)的遷移、組合、融會(huì)的能力,有利于提高學(xué)生綜合運(yùn)用所學(xué)知識(shí)分析、解決問(wèn)題的能力.該類(lèi)試題設(shè)計(jì)巧妙、命題新穎別致,常求特

8、定量、 特定式子的最值或范圍.常與函數(shù)解析式的求法、函數(shù)最值、不等式等知識(shí)交匯,成為近年高考熱點(diǎn).解決圓錐曲線中最值、范圍問(wèn)題的基本思想是建立目標(biāo)函數(shù)和建立不等關(guān)系,根據(jù)目標(biāo)函數(shù)和不等式求最值、范圍,因此這類(lèi)問(wèn)題的難點(diǎn),就是如何建立目標(biāo)函數(shù)和不等關(guān)系.建立目標(biāo)函數(shù)或不等關(guān)系的關(guān)鍵是選用一個(gè)合適變量,其原則是這個(gè)變 量能夠表達(dá)要解決的問(wèn)題,這個(gè)變量可以是直線的斜率、直線的截距、點(diǎn)的坐標(biāo)等,要根據(jù)問(wèn)題的實(shí)際情況靈活處理. 圖2 【例2】 (蘇北四市(徐州、淮安、連云港、宿遷)高三上學(xué)期期末)如圖2,在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率為,且右焦點(diǎn)F到左準(zhǔn)線的距

9、離為6. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)A為橢圓C的左頂點(diǎn),P為橢圓C上位于x軸上方的點(diǎn),直線PA交y軸于點(diǎn)M,過(guò)點(diǎn)F作MF的垂線,交y軸于點(diǎn)N. (ⅰ)當(dāng)直線的PA斜率為時(shí),求△FMN的外接圓的方程; (ⅱ)設(shè)直線AN交橢圓C于另一點(diǎn)Q,求△APQ的面積的最大值. [解] (1)由題意,得解得 則b=2, 所以橢圓C的標(biāo)準(zhǔn)方程為+=1. (2)由題可設(shè)直線PA的方程為y=k(x+4),k>0,則M(0,4k), 所以直線FN的方程為y=(x-2),則N . (ⅰ)當(dāng)直線PA的斜率為,即k=時(shí),M(0,2),N(0,-4),F(xiàn)(2,0),=(2,-2),=(-2,-4

10、),·=-8+8=0. 所以MF⊥FN,所以圓心為(0,-1),半徑為3, 所以△FMN的外接圓的方程為x2+(y+1)2=9. (ⅱ)聯(lián)立消去y并整理得,(1+2k2)x2+16k2x+32k2-16=0, 解得x1=-4或x2=,所以P, 直線AN的方程為y=-(x+4),同理可得,Q, 所以P,Q關(guān)于原點(diǎn)對(duì)稱(chēng),即PQ過(guò)原點(diǎn). 所以△APQ的面積S=OA·(yP-yQ)=2×=≤8,當(dāng)且僅當(dāng)2k=,即k=時(shí),取“=”. 所以△APQ的面積的最大值為8. [方法總結(jié)] 這類(lèi)問(wèn)題在題目中往往沒(méi)有給出不等關(guān)系,需要我們?nèi)ふ遥笞钪祷蚍秶R?jiàn)的解法:(1)幾何法:若題目的條件和

11、結(jié)論能明顯體現(xiàn)幾何特征及意義,可考慮利用圖形性質(zhì)來(lái)解決;(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求最值,求函數(shù)最值常用的方法有配方法、判別式法、導(dǎo)數(shù)法、基本不等式法及函數(shù)的單調(diào)性、有界性法等.用這種方法求解圓錐曲線的最值與范圍問(wèn)題時(shí),除了重視建立函數(shù)關(guān)系式這個(gè)關(guān)鍵點(diǎn)外,還要密切注意所建立的函數(shù)式中的變量是否有限制范圍,這些限制范圍恰好制約了最值的取得,因此在解題時(shí)要予以高度關(guān)注. 3.圓錐曲線中的探索性問(wèn)題 探索性問(wèn)題主要考查學(xué)生探索解題途徑,解決非傳統(tǒng)完備問(wèn)題的能力,是命題者根據(jù)學(xué)科特點(diǎn),將數(shù)學(xué)知識(shí)有機(jī)結(jié)合并賦予新的情境創(chuàng)設(shè)而成的,要求學(xué)生自己觀

12、察、分析、創(chuàng)造性地運(yùn)用所學(xué)知識(shí)和方法解決問(wèn)題,它能很好地考查數(shù)學(xué)思維能力以及科學(xué)的探索精神.因此越來(lái)越受到高考命題者的青睞.探索性問(wèn)題實(shí)質(zhì)上是探索結(jié)論的開(kāi)放性問(wèn)題.相對(duì)于其他的開(kāi)放性問(wèn)題來(lái)說(shuō),由于這類(lèi)問(wèn)題的結(jié)論較少(只有存在、 不存在兩個(gè)結(jié)論有時(shí)候需討論),因此,思考途徑較為單一,難度易于控制,受到各類(lèi)考試命題者的青睞.解答這一類(lèi)問(wèn)題,往往從承認(rèn)結(jié)論、變結(jié)論為條件出發(fā),然后通過(guò)特例歸納,或由演繹推理證明其合理性.探索過(guò)程要充分挖掘已知條件,注意條件的完備性,不要忽略任何可能的因素. 圖3 【例3】 (蘇北四市(淮安、宿遷、連云港、徐州)高三上學(xué)期期中)如圖3,在平面直角坐標(biāo)系xOy中,

13、已知圓C:x2+y2-4x=0及點(diǎn)A(-1,0),B(1,2). (1)若直線l平行于AB,與圓C相交于M,N兩點(diǎn),MN=AB,求直線l的方程; (2)在圓C上是否存在點(diǎn)P滿足條件,使得PA2+PB2=12?若存在,求點(diǎn)P的個(gè)數(shù);若不存在,說(shuō)明理由. 【導(dǎo)學(xué)號(hào):56394099】 [解] (1)圓C的標(biāo)準(zhǔn)方程為(x-2)2+y2=4,所以圓心C(2,0),半徑為2. 因?yàn)閘∥AB,A(-1,0),B(1,2),所以直線l的斜率為=1, 設(shè)直線l的方程為x-y+m=0, 則圓心C到直線l的距離為d==. 因?yàn)镸N=AB==2, 而CM2=d2+2,所以4=+2, 解得m=0

14、或m=-4, 故直線l的方程為x-y=0或x-y-4=0. (2)假設(shè)圓C上存在點(diǎn)P滿足條件,設(shè)P(x,y),則(x-2)2+y2=4, PA2+PB2=(x+1)2+(y-0)2+(x-1)2+(y-2)2=12, 即x2+y2-2y-3=0,即x2+(y-1)2=4, 因?yàn)閨2-2|<<2+2, 所以圓(x-2)2+y2=4與圓x2+(y-1)2=4相交, 所以點(diǎn)P的個(gè)數(shù)為2. [方法總結(jié)] (1)解決存在性問(wèn)題的解題步驟:第一步:先假設(shè)存在,引入?yún)⒆兞?,根?jù)題目條件列出關(guān)于參變量的方程(組)或不等式(組);第二步:解此方程(組)或不等式(組),若有解則存在,若無(wú)解則不存在;第三步:得出結(jié)論.(2)解決存在性問(wèn)題應(yīng)注意以下幾點(diǎn):①當(dāng)條件和結(jié)論不唯一時(shí)要分類(lèi)討論;②當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件;③當(dāng)條件和結(jié)論都不知,按常規(guī)方法解題很難時(shí),要思維開(kāi)放,采取另外的途徑. 精品數(shù)學(xué)高考復(fù)習(xí)資料 精品數(shù)學(xué)高考復(fù)習(xí)資料

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!