新編高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案19

上傳人:沈*** 文檔編號(hào):61881846 上傳時(shí)間:2022-03-13 格式:DOC 頁數(shù):11 大?。?17.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案19_第1頁
第1頁 / 共11頁
新編高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案19_第2頁
第2頁 / 共11頁
新編高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案19_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案19》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)理一輪資源庫(kù) 第4章學(xué)案19(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 學(xué)案19 函數(shù)y=Asin(ωx+φ)的圖象及 三角函數(shù)模型的簡(jiǎn)單應(yīng)用 導(dǎo)學(xué)目標(biāo): 1.了解函數(shù)y=Asin(ωx+φ)的物理意義;能畫出y=Asin(ωx+φ)的圖象,了解參數(shù)A,ω,φ對(duì)函數(shù)圖象變化的影響.2.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會(huì)用三角函數(shù)解決一些簡(jiǎn)單實(shí)際問題. 自主梳理 1.用五點(diǎn)法畫y=Asin(ωx+φ)一個(gè)周期內(nèi)的簡(jiǎn)圖用五點(diǎn)法畫y=Asin(ωx+φ)一個(gè)周期內(nèi)的簡(jiǎn)圖時(shí),要找五個(gè)特征點(diǎn).如下表所示. x ωx+φ y= Asin(ωx+φ) 0 A 0 -A 0

2、 2.圖象變換:函數(shù)y=Asin(ωx+φ) (A>0,ω>0)的圖象可由函數(shù)y=sin x的圖象作如下變換得到: (1)相位變換:y=sin x→y=sin(x+φ),把y=sin x圖象上所有的點(diǎn)向____(φ>0)或向____(φ<0)平行移動(dòng)____個(gè)單位. (2)周期變換:y=sin(x+φ)→y=sin(ωx+φ),把y=sin(x+φ)圖象上各點(diǎn)的橫坐標(biāo)______(0<ω<1)或______(ω>1)到原來的________倍(縱坐標(biāo)不變). (3)振幅變換:y=sin(ωx+φ)→y=Asin(ωx+φ),把y=sin(ωx+φ)圖象上各點(diǎn)的縱坐標(biāo)______(A>1

3、)或______(00,ω>0),x∈(-∞,+∞)表示一個(gè)振動(dòng)量時(shí),則____叫做振幅,T=________叫做周期,f=________叫做頻率,________叫做相位,____叫做初相. 函數(shù)y=Acos(ωx+φ)的最小正周期為__________.y=Atan(ωx+φ)的最小正周期為__________. 自我檢測(cè) 1.要得到函數(shù)y=sin的圖象,可以把函數(shù)y=sin 2x的圖象向________平移________個(gè)單位. 2.已知函數(shù)f(x)=sin (x∈R,ω>0)的最小正周

4、期為π.將y=f(x)的圖象向左平移|φ|個(gè)單位長(zhǎng)度,所得圖象關(guān)于y軸對(duì)稱,則|φ|的最小值為________. 3.(2010·四川改編)將函數(shù)y=sin x的圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是________. 4.彈簧振子的振動(dòng)是簡(jiǎn)諧運(yùn)動(dòng),在振動(dòng)過程中,位移s與時(shí)間t之間的關(guān)系式為s=10sin(t-),t∈[0,+∞),則彈簧振子振動(dòng)的周期為________,頻率為________,振幅為________,相位是________,初相是________. 5.一半徑為10的水輪,水輪的圓心到水面的距離為

5、7,已知水輪每分鐘旋轉(zhuǎn)4圈,水輪上點(diǎn)P到水面距離y與時(shí)間x(s)滿足函數(shù)關(guān)系式y(tǒng)=Asin(ωx+φ)+7(A>0,ω>0),則A=________,ω=________. 探究點(diǎn)一 三角函數(shù)的圖象及變換 例1 已知函數(shù)y=2sin. (1)求它的振幅、周期、初相;(2)用“五點(diǎn)法”作出它在一個(gè)周期內(nèi)的圖象;(3)說明y=2sin的圖象可由y=sin x的圖象經(jīng)過怎樣的變換而得到. 變式遷移1 設(shè)f(x)=1+sin(2x-),x∈R. (1)畫出f(x)在上的圖象; (2)求函數(shù)的單調(diào)區(qū)間; (3)如何由y=sin x的圖象變換得到f(x)的圖象?

6、 探究點(diǎn)二 求y=Asin(ωx+φ)的解析式 例2 已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<,x∈R)的圖象的一部分如圖所示.求函數(shù)f(x)的解析式. 變式遷移2 (2010·寧波高三二模)已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2). 求f(x)的解析式及x0的值; 探究點(diǎn)三 三角函數(shù)模型的簡(jiǎn)單應(yīng)用 例3 已知海灣內(nèi)海浪的高度y(米)是時(shí)間t(0≤t≤24,單位:小時(shí)

7、)的函數(shù),記作y=f(t).下表是某日各時(shí)刻記錄的浪高數(shù)據(jù): t 0 3 6 9 12 15 18 21 24 y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5 經(jīng)長(zhǎng)期觀測(cè),y=f(t)的曲線可近似地看成是函數(shù)y=Acos ωt+b. (1)根據(jù)以上數(shù)據(jù),求函數(shù)y=Acos ωt+b的最小正周期T,振幅A及函數(shù)表達(dá)式; (2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8∶00至晚上20∶00之間,有多少時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)? 變式遷移3 交流電的電壓E(單位

8、:伏)與時(shí)間t(單位:秒)的關(guān)系可用E=220sin表示,求: (1)開始時(shí)的電壓; (2)最大電壓值重復(fù)出現(xiàn)一次的時(shí)間間隔; (3)電壓的最大值和第一次取得最大值時(shí)的時(shí)間. 數(shù)形結(jié)合思想 例 (14分)設(shè)關(guān)于θ的方程cos θ+sin θ+a=0在區(qū)間(0,2π)內(nèi)有相異的兩個(gè)實(shí)根α、β. (1)求實(shí)數(shù)a的取值范圍; (2)求α+β的值. 【答題模板】 解 (1)原方程可化為sin(θ+)=-,作出函數(shù)y=sin(x+)(x∈(0,2π))的圖象. 由圖知,方程在(0,2π)內(nèi)有相異實(shí)根α,β的充要條件是.[4分] 即-2

9、 [7分] (2)由圖知:當(dāng)-

10、要有以下幾個(gè)方面:①比較大?。虎谇髥握{(diào)區(qū)間;③解不等式;④確定方程根的個(gè)數(shù).如判斷方程sin x=x的實(shí)根個(gè)數(shù);⑤對(duì)稱問題等. 【易錯(cuò)點(diǎn)剖析】 此題若不用數(shù)形結(jié)合法,用三角函數(shù)有界性求a的范圍,不僅過程繁瑣,而且很容易漏掉a≠-的限制,而從圖象中可以清楚地看出當(dāng)a=-時(shí),方程只有一解. 1.從“整體換元”的思想認(rèn)識(shí)、理解、運(yùn)用“五點(diǎn)法作圖”,尤其在求y=Asin(ωx+φ)的單調(diào)區(qū)間、解析式等相關(guān)問題中要充分理解基本函數(shù)y=sin x的作用. 2.三角函數(shù)自身綜合問題:要以課本為主,充分掌握公式之間的內(nèi)在聯(lián)系,從函數(shù)名稱、角度、式子結(jié)構(gòu)等方面觀察,尋找聯(lián)系,結(jié)合單位圓或函數(shù)圖象等分

11、析解決問題. 3.三角函數(shù)模型應(yīng)用的解題步驟: (1)根據(jù)圖象建立解析式或根據(jù)解析式作出圖象. (2)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型. (3)利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型. (滿分:90分) 一、填空題(每小題6分,共48分) 1.將函數(shù)y=sin的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再將所得的圖象向左平移個(gè)單位,得到的圖象對(duì)應(yīng)的解析式是________. 2.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<)圖象的一部分如圖所示,其解析式為________. 3.(2011·徐州模擬)為

12、得到函數(shù)y=cos的圖象,只需將函數(shù)y=sin 2x的圖象向________平移________個(gè)單位. 4.(2009·遼寧改編)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的圖象如圖所示,f()=-,則f(0)=________. 5.若函數(shù)y=Asin(ωx+φ)+m(A>0,ω>0,|φ|<)的最大值為4,最小值為0,最小正周期為,直線x=是其圖象的一條對(duì)稱軸,則它的解析式是______________. 6.若動(dòng)直線x=a與函數(shù)f(x)=sin x和g(x)=cos x的圖象分別交于M、N兩點(diǎn),則|MN|的最大值為________. 7.(2011·宜昌模擬)

13、函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+…+f(2011)的值為________. 8.(2011·南通期末)若函數(shù)f(x)=2cos(ωx+φ)+m對(duì)任意t都有f(t+)=f(-t),且f()=-1,則實(shí)數(shù)m的值等于________. 二、解答題(共42分) 9.(14分)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的圖象的一部分如下圖所示. (1)求函數(shù)f(x)的解析式; (2)當(dāng)x∈[-6,-]時(shí),求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應(yīng)的x的值. 10.

14、(14分)已知函數(shù)f(x)=Asin(ωx+φ) (A>0,0<ω≤2且0≤φ≤π)是R上的偶函數(shù),其圖象過點(diǎn)M(0,2).又f(x)的圖象關(guān)于點(diǎn)N對(duì)稱且在區(qū)間[0,π]上是減函數(shù),求f(x)的解析式. 11.(14分)(2010·山東)已知函數(shù)f(x)=sin(π-ωx)·cos ωx+cos2ωx (ω>0)的最小正周期為π, (1)求ω的值; (2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上的最小值. 答案 自主梳理 1.     0  π  2π 2.(1)左 右 

15、|φ| (2)伸長(zhǎng) 縮短  (3)伸長(zhǎng) 縮短 A 3.A   ωx+φ φ   自我檢測(cè) 1.右  2. 3.y=sin 4.4π  10 t- - 5.10  課堂活動(dòng)區(qū) 例1 解題導(dǎo)引 (1)作三角函數(shù)圖象的基本方法就是五點(diǎn)法,此法注意在作出一個(gè)周期上的簡(jiǎn)圖后,應(yīng)向兩邊伸展一下,以示整個(gè)定義域上的圖象; (2)變換法作圖象的關(guān)鍵是看x軸上是先平移后伸縮還是先伸縮后平移,對(duì)于后者可利用ωx+φ=ω來確定平移單位. 解 (1)y=2sin的振幅A=2,周期T==π,初相φ=. (2)令X=2x+,則y=2sin=2sin X. 列表: x - X 0

16、 π 2π y=sin X 0 1 0 -1 0 y= 2sin 0 2 0 -2 0 描點(diǎn)連線,得圖象如圖所示: (3)方法一 把y=sin x的圖象上所有的點(diǎn)向左平移個(gè)單位,得到y(tǒng)=sin的圖象,再把y=sin的圖象上的點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到y(tǒng)=sin的圖象, 最后把y=sin上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變),即可得到y(tǒng)=2sin的圖象. 方法二 將y=sin x的圖象上每一點(diǎn)的橫坐標(biāo)x縮短為原來的倍(縱坐標(biāo)不變),得到y(tǒng)=sin 2x的圖象;再將y=sin 2x的圖象向左平移個(gè)單位,得

17、到y(tǒng)=sin 2=sin的圖象;再將y=sin的圖象上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)伸長(zhǎng)為原來的2倍,得到y(tǒng)=2sin的圖象. 變式遷移1 解 (1)(五點(diǎn)法)設(shè)X=2x-, 則x=X+,令X=0,,π,,2π, 于是五點(diǎn)分別為,,,,,描點(diǎn)連線即可得圖象,如圖. (2)由-+2kπ≤2x-≤+2kπ,k∈Z, 得單調(diào)增區(qū)間為,k∈Z. 由+2kπ≤2x-≤+2kπ,k∈Z, 得單調(diào)減區(qū)間為,k∈Z. (3)把y=sin x的圖象向右平移個(gè)單位;再把橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變);最后把所得圖象向上平移1個(gè)單位即得y=sin+1的圖象. 例2 解題導(dǎo)引 確定y=Asi

18、n(ωx+φ)+b的解析式的步驟: (1)求A,b.確定函數(shù)的最大值M和最小值m,則A=,b=.(2)求ω.確定函數(shù)的周期T,則ω=.(3)求參數(shù)φ是本題的關(guān)鍵,由特殊點(diǎn)求φ時(shí),一定要分清特殊點(diǎn)是“五點(diǎn)法”的第幾個(gè)點(diǎn). 解 由圖象可知A=2,T=8. ∴ω===. 方法一 由圖象過點(diǎn)(1,2), 得2sin=2, ∴sin=1.∵|φ|<,∴φ=, ∴f(x)=2sin. 方法二 ∵點(diǎn)(1,2)對(duì)應(yīng)“五點(diǎn)”中的第二個(gè)點(diǎn). ∴×1+φ=,∴φ=,∴f(x)=2sin. 變式遷移2 解 由題意可得: A=2,=2π,即=4π,∴ω=, f(x)=2sin,f(0)=2sin

19、 φ=1, 由|φ|<,∴φ=.∴f(x)=2sin(x+). f(x0)=2sin=2, 所以x0+=2kπ+,x0=4kπ+ (k∈Z), 又∵x0是最小的正數(shù),∴x0=. 例3 解題導(dǎo)引 (1)三角函數(shù)模型在實(shí)際中的應(yīng)用體現(xiàn)在兩個(gè)方面,一是已知函數(shù)模型,如本例,關(guān)鍵是準(zhǔn)確理解自變量的意義及自變量與函數(shù)之間的對(duì)應(yīng)法則,二是把實(shí)際問題抽象轉(zhuǎn)化成數(shù)學(xué)問題,建立三角函數(shù)模型,再利用三角函數(shù)的有關(guān)知識(shí)解決問題,其關(guān)鍵是建模.(2)如何從表格中得到A、ω、b的值是解題的關(guān)鍵也是易錯(cuò)點(diǎn),同時(shí)第二問中解三角不等式也是易錯(cuò)點(diǎn).(3)對(duì)于三角函數(shù)模型y=Asin(ωx+φ)+k (A>0,ω>0)

20、中參數(shù)的確定有如下結(jié)論:①A=;②k=;③ω=;④φ由特殊點(diǎn)確定. 解 (1)由表中數(shù)據(jù),知周期T=12, ∴ω===, 由t=0,y=1.5,得A+b=1.5; 由t=3,y=1.0,得b=1.0, ∴A=0.5,b=1,∴y=cos t+1. (2)由題知,當(dāng)y>1時(shí)才可對(duì)沖浪者開放, ∴cos t+1>1,∴cos t>0, ∴2kπ-

21、供沖浪者運(yùn)動(dòng),即上午9∶00至下午3∶00. 變式遷移3 解 (1)t=0時(shí),E=220sin =110(伏). (2)T==0.02(秒). (3)當(dāng)100πt+=,t=秒時(shí),第一次取得最大值,電壓的最大值為220伏. 課后練習(xí)區(qū) 1.y=sin 2.y=sin(2x+) 3.左  4. 5.y=2sin+2 6. 7.2(+1) 8.-3或1 9.解 (1)由圖象知A=2, ∵T==8,∴ω=.……………………………………………………………………(3分) 又圖象經(jīng)過點(diǎn)(-1,0),∴2sin(-+φ)=0. ∵|φ|<,∴φ=. ∴f(x)=2sin(x+).…

22、……………………………………………………………………(6分) (2)y=f(x)+f(x+2) =2sin(x+)+2sin(x++) =2sin(x+)=2cosx.…………………………………………………………(10分) ∵x∈[-6,-],∴-≤x≤-. ∴當(dāng)x=-,即x=-時(shí),y=f(x)+f(x+2)取得最大值;當(dāng)x=-π,即x=-4時(shí),y=f(x)+f(x+2)取得最小值-2.…………………………………………………………(14分) 10.解 根據(jù)f(x)是R上的偶函數(shù),圖象過點(diǎn)M(0,2),可得f(-x)=f(x)且A=2, 則有2sin(-ωx+φ)=2sin(ωx+

23、φ),即sin ωxcos φ=0, ∴cos φ=0,即φ=kπ+ (k∈Z). 而0≤φ≤π,∴φ=.………………………………………………………………………(5分) 再由f(x)=2sin(-ωx+)=2cos ωx的圖象關(guān)于點(diǎn)N對(duì)稱,f()=2cos(π)=0, ∴cos π=0, 即π=kπ+ (k∈Z),ω= (k∈Z).…………………………………………(10分) 又0<ω≤2,∴ω=或ω=2. 最后根據(jù)f(x)在區(qū)間[0,π]上是減函數(shù), 可知只有ω=滿足條件. 所以f(x)=2cos x.………………………………………………………………………(14分) 11.

24、解 (1)f(x)=sin(π-ωx)cos ωx+cos2ωx =sin ωxcos ωx+ =sin 2ωx+cos 2ωx+ =sin+.……………………………………………………………………(6分) 由于ω>0,依題意得=π,所以ω=1.………………………………………………(8分) (2)由(1)知f(x)=sin+, 所以g(x)=f(2x) =sin+.……………………………………………………………………(10分) 當(dāng)0≤x≤時(shí),≤4x+≤. 所以≤sin≤1. 因此1≤g(x)≤,…………………………………………………………………(13分) 所以g(x)在此區(qū)間內(nèi)的最小值為1.……………………………………………………(14分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!