4、?2a2-ac-c2>0
?(a-c)(2a+c)>0?(a-c)(a-b)>0.]
4.設(shè)f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)單調(diào)遞減,若x1+x2>0,則f(x1)+f(x2)的值( )
A.恒為負值 B.恒等于零
C.恒為正值 D.無法確定正負
A [由f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)單調(diào)遞減,可知f(x)是R上的單調(diào)遞減函數(shù),由x1+x2>0,可知x1>-x2,f(x1)<f(-x2)=-f(x2),則f(x1)+f(x2)<0,故選A.]
5.設(shè)a,b是兩個實數(shù),給出下列條件:
【導(dǎo)學(xué)號:79140211】
①a+b>1;②a+
5、b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a,b中至少有一個大于1”的條件是( )
A.②③ B.①②③
C.③ D.③④⑤
C [若a=,b=,則a+b>1,但a<1,b<1,故①推不出;
若a=b=1,則a+b=2,但不滿足a,b中至少有一個大于1,故②推不出;
若a=-2,b=-3,則a2+b2>2,但a<1,b<1,故④推不出;
若a=-2,b=-3,則ab>1,但a<1,b<1,故⑤推不出.
對于③,若a+b>2,則“a,b中至少有一個大于1”成立.
證明:(反證法)假設(shè)a≤1且b≤1,則a+b≤2,與a+b>2矛盾.
因此假設(shè)不成立,故a,
6、b中至少有一個大于1.故選C.]
二、填空題
6.用反證法證明“若x2-1=0,則x=-1或x=1”時,應(yīng)假設(shè)________.
x≠-1且x≠1 [“x=-1或x=1”的否定是“x≠-1且x≠1”.]
7.設(shè)a>b>0,m=-,n=,則m,n的大小關(guān)系是__________.
m?a0,顯然成立.]
8.如果a+b>a+b,則a,b應(yīng)滿足的條件是________.
a≥0,b≥0且a≠b [a+b>a+b,即
(-)2(+)>0,需滿足a≥0,b≥0且a≠b.]
7、三、解答題
9.若a,b,c是不全相等的正數(shù),求證:
【導(dǎo)學(xué)號:79140212】
lg+lg+lg>lg a+lg b+lg c.
[證明] ∵a,b,c∈(0,+∞),
∴≥>0,≥>0,≥>0.
又上述三個不等式中等號不能同時成立.
∴··>abc成立.
上式兩邊同時取常用對數(shù),
得lg>lg abc,
∴l(xiāng)g+lg+lg>lg a+lg b+lg c.
10.設(shè)數(shù)列{an}是公比為q的等比數(shù)列,Sn是它的前n項和.
(1)求證:數(shù)列{Sn}不是等比數(shù)列;
(2)數(shù)列{Sn}是等差數(shù)列嗎?為什么?
[解] (1)證明:假設(shè)數(shù)列{Sn}是等比數(shù)列,則S=S1S
8、3,
即a(1+q)2=a1·a1·(1+q+q2),
因為a1≠0,所以(1+q)2=1+q+q2,
即q=0,這與公比q≠0矛盾,
所以數(shù)列{Sn}不是等比數(shù)列.
(2)當q=1時,Sn=na1,故{Sn}是等差數(shù)列;
當q≠1時,{Sn}不是等差數(shù)列,
否則2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),
得q=0,這與公比q≠0矛盾.
綜上,當q=1時,數(shù)列{Sn}是等差數(shù)列;當q≠1時,數(shù)列{Sn}不是等差數(shù)列.
B組 能力提升
11.已知函數(shù)f(x)=,a,b是正實數(shù),A=f,B=f(),C=f,則A,B,C的大小關(guān)系為( )
A.A≤
9、B≤C B.A≤C≤B
C.B≤C≤A D.C≤B≤A
A [∵≥≥,又f(x)=在R上是減函數(shù).
∴f≤f()≤f,即A≤B≤C.]
12.在不等邊三角形ABC中,a為最大邊,要想得到∠A為鈍角的結(jié)論,三邊a,b,c應(yīng)滿足__________.
【導(dǎo)學(xué)號:79140213】
a2>b2+c2 [由余弦定理cos A=<0,得b2+c2-a2<0,即a2>b2+c2.]
13.若f(x)的定義域為[a,b],值域為[a,b](a-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值;若不存在,請說明理由.
[解] (1)由題設(shè)得g(x)=(x-1)2+1,其圖像的對稱軸為x=1,區(qū)間[1,b]在對稱軸的右邊,所以函數(shù)在區(qū)間[1,b]上單調(diào)遞增.
由“四維光軍”函數(shù)的定義可知,g(1)=1,g(b)=b,
即b2-b+=b,解得b=1或b=3.
因為b>1,所以b=3.
(2)假設(shè)函數(shù)h(x)=在區(qū)間[a,b](a>-2)上是“四維光軍”函數(shù),
因為h(x)=在區(qū)間(-2,+∞)上單調(diào)遞減,
所以有即
解得a=b,這與已知矛盾.故不存在.