新編高考數(shù)學(xué)理一輪資源庫第十一章 第1講兩個(gè)基本計(jì)數(shù)原理

上傳人:痛*** 文檔編號(hào):62115892 上傳時(shí)間:2022-03-14 格式:DOC 頁數(shù):5 大?。?00.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)理一輪資源庫第十一章 第1講兩個(gè)基本計(jì)數(shù)原理_第1頁
第1頁 / 共5頁
新編高考數(shù)學(xué)理一輪資源庫第十一章 第1講兩個(gè)基本計(jì)數(shù)原理_第2頁
第2頁 / 共5頁
新編高考數(shù)學(xué)理一輪資源庫第十一章 第1講兩個(gè)基本計(jì)數(shù)原理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)理一輪資源庫第十一章 第1講兩個(gè)基本計(jì)數(shù)原理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)理一輪資源庫第十一章 第1講兩個(gè)基本計(jì)數(shù)原理(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 第十一章 計(jì)數(shù)原理 第1講 兩個(gè)基本計(jì)數(shù)原理 一、填空題 1.5名運(yùn)動(dòng)員爭奪三個(gè)項(xiàng)目的冠軍(不能并列),所有可能的結(jié)果共有_______種. 解析 第n個(gè)項(xiàng)目的冠軍可由5名運(yùn)動(dòng)員中的任一人取得,共5種方法(n=1,2,3),根據(jù)分步計(jì)數(shù)原理,所有可能的結(jié)果共有5×5×5=53(種). 答案 53 2.現(xiàn)有4名教師參加說題比賽,共有4道備選題目,若每位選手從中有放回地隨機(jī)選出一道題進(jìn)行說題,其中恰有一道題沒有被這4位選中的情況有________種. 解析 首先選擇題目,從4道題目中選出3道,選法為C,而后再將獲得同一道題目的2位老師選出,選法為C,最

2、后將3道題目,分配給3組老師,分配方式為A,即滿足題意的情況共有CCA=144(種). 答案 144 3.某次活動(dòng)中,有30人排成6行5列,現(xiàn)要從中選出3人進(jìn)行禮儀表演,要求這3人中的任意2人不同行也不同列,則不同的選法種數(shù)為________(用數(shù)字作答). 解析 其中最先選出的一個(gè)人有30種方法,此時(shí)不能再從這個(gè)人所在的行和列共9個(gè)位置上選人,還剩一個(gè)5行4列的隊(duì)形,故選第二個(gè)人有20種方法,此時(shí)不能再從該人所在的行和列上選人,還剩一個(gè)4行3列的隊(duì)形,此時(shí)第三個(gè)人的選法有12種,根據(jù)分步乘法計(jì)數(shù)原理,總的選法種數(shù)是30×20×12=7 200. 答案 7 200 4.如圖所示的陰影

3、部分由方格紙上3個(gè)小方格組成,我們稱這樣的圖案為L型(每次旋轉(zhuǎn)90°仍為L型圖案),那么在由4×5個(gè)小方格組成的方格紙上可以畫出不同位置的L型圖案的個(gè)數(shù)是________. 答案 48 5.如圖所示,在連接正八邊形的三個(gè)頂點(diǎn)而成的三角形中,與正八邊形有公共邊的三角形有________個(gè). 答案 40 6.已知集合A={1,2,3,4},B={5,6,7},C={8,9},現(xiàn)在從這三個(gè)集合中取出兩個(gè)集合,再從這兩個(gè)集合中各取出的一個(gè)元素,組成一個(gè)含有兩個(gè)元素的集合,則一共可組成集合________個(gè). 解析 分三類:第一類:若取出的集合是A,B,則可組成4×3=12個(gè)集合;第二類

4、:若取出的集合是A,C,則可組成4×2=8個(gè)集合;第三類:若取出的集合是B,C,則可組成3×2=6個(gè)集合,故一共可組成12+8+6=26個(gè)集合. 答案 26 7.將數(shù)字1,2,3,4,5,6按第一行1個(gè)數(shù),第二行2個(gè)數(shù),第三行3個(gè)數(shù)的形式隨機(jī)排列,設(shè)Ni(i=1,2,3)表示第i行中最大的數(shù),則滿足N1<N2<N3的所有排列的個(gè)數(shù)是________(用數(shù)字作答). 解析 由已知數(shù)字6一定在第三行,第三行的排法種數(shù)為AA=60;剩余的三個(gè)數(shù)字中最大的一定排在第二行,第二行的排法種數(shù)為AA=4,由分步計(jì)數(shù)原理滿足條件的排列個(gè)數(shù)是240. 答案 240 8. 數(shù)字1,2,3,…,9這九個(gè)

5、數(shù)字填寫在如圖的9個(gè)空格中,要求每一行從左到右依次增大,每列從上到下也依次增大,當(dāng)數(shù)字4固定在中心位置時(shí),則所有填寫空格的方法共有________種. 解析 必有1、4、9在主對(duì)角線上,2、3只有兩種不同的填法,對(duì)于它們的每一種填法,5只有兩種填法.對(duì)于5的每一種填法,6、7、8只有3種不同的填法,由分步計(jì)數(shù)原理知共有22×3=12(種)填法. 答案 12 9.從集合U={a,b,c,d}的子集中選出4個(gè)不同的子集,需同時(shí)滿足以下兩個(gè)條件: (1)?,U都要選出; (2)對(duì)選出的任意兩個(gè)子集A和B,必有A?B或A?B.那么,共有________種不同的選法. 解析 將選法分成兩類.

6、第一類:其中一個(gè)是單元素集合,則另一集合為含兩個(gè)或三個(gè)元素且含有單元素集合中的元素,有C×6=24(種). 第二類:其中一個(gè)是兩個(gè)元素集合,則另一個(gè)是含有這兩個(gè)元素的三元素集合,有C×2=12(種). 綜上共有24+12=36(種). 答案 36 10.如果一條直線與一個(gè)平面垂直,那么,稱此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”,在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”的個(gè)數(shù)是________. 解析 正方體的一條棱對(duì)應(yīng)著2個(gè)“正交線面對(duì)”,12條棱共對(duì)應(yīng)著24個(gè)“正交線面對(duì)”;正方體的一條面對(duì)角線對(duì)應(yīng)著1個(gè)“正交線面對(duì)”,12條面對(duì)角線對(duì)應(yīng)著12上“

7、正交線面對(duì)”,共有36個(gè). 答案 36 二、解答題 11.某外語組有9人,每人至少會(huì)英語和日語中的一門,其中7人會(huì)英語,3人會(huì)日語,從中選出會(huì)英語和日語的各一人,有多少種不同的選法? 解 由題意得有1人既會(huì)英語又會(huì)日語,6人只會(huì)英語,2人只會(huì)日語. 第一類:從只會(huì)英語的6人中選1人說英語,共有6種方法,則說日語的有2+1=3(種),此時(shí)共有6×3=18(種); 第二類:不從只會(huì)英語的6人中選1人說英語,則只有1種方法,則選會(huì)日語的有2種,此時(shí)共有1×2=2(種);[來源:] 所以根據(jù)分類計(jì)數(shù)原理知共有18+2=20(種)選法. 12. 如圖,用四種不同顏色給圖中的A,B,C

8、,D,E,F(xiàn)六個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色.則不同的涂色方法共有多少種? 解 先涂A、D、E三個(gè)點(diǎn),共有4×3×2=24(種)涂法,然后再按B、C、F的順序涂色,分為兩類:一類是B與E或D同色,共有2×(2×1+1×2)=8(種)涂法;另一類是B與E或D不同色,共有1×(1×1+1×2)=3(種)涂法.所以涂色方法共有24×(8+3)=264(種). 13.用n種不同的顏色為兩塊廣告牌著色(如圖甲、乙所示).要求在①,②,③,④四個(gè)區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一種顏色. (1)若n=6,為甲著色時(shí)共有多少種不同的方法? (2)若為乙著色

9、時(shí)共有120種不同的方法,求n的值. 解 完成著色這件事,共分為四個(gè)步驟,可以依次考慮為①,②,③,④這四個(gè)區(qū)域著色時(shí)各自的方法數(shù),再利用分步乘法計(jì)數(shù)原理確定出總的著色種數(shù),因此有: (1)為①區(qū)域著色時(shí)有6種方法,為②區(qū)域著色時(shí)有5種方法,為③區(qū)域著色時(shí)有4種方法,為④區(qū)域著色時(shí)有4種方法,∴依據(jù)分步(乘法)計(jì)數(shù)原理,不同的著色方法為6×5×4×4=480(種). (2)由題意知,為①區(qū)域著色時(shí)有n種方法,為②區(qū)域著色時(shí)有(n-1)種方法,為③區(qū)域著色時(shí)有(n-2)種方法,為④區(qū)域著色時(shí)有(n-3)種方法,由分步計(jì)數(shù)原理得不同的著色數(shù)為n(n-1)(n-2)(n-3).∴n(n-1)(

10、n-2)(n-3)=120. 而120=5×4×3×2,∴n=5. 14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是從A到B的映射. (1)若B中每一元素都有原象,這樣不同的f有多少個(gè)? (2)若B中的元素0無原象,這樣的f有多少個(gè)? (3)若f滿足f(a1)+f(a2)+f(a3)+f(a4)=4,這樣的f又有多少個(gè)? 解 (1)顯然對(duì)應(yīng)是一一對(duì)應(yīng)的,即a1找象有4種方法,a2找象有3種方法,a3找象有2種方法,a4找象有1種方法,所以不同的f共有4×3×2×1=24(個(gè)). (2)0無原象,1,2,3有無原象不限,所以為A中每一元素找象時(shí)都有3種方法.所以不同的f共有34=81(個(gè)). (3)分為如下四類: 第一類,A中每一元素都與1對(duì)應(yīng),有1種方法; 第二類,A中有兩個(gè)元素對(duì)應(yīng)1,一個(gè)元素對(duì)應(yīng)2,另一個(gè)元素與0對(duì)應(yīng),有C·C=12(種)方法; 第三類,A中有兩個(gè)元素對(duì)應(yīng)2,另兩個(gè)元素對(duì)應(yīng)0,有C·C=6(種)方法; 第四類,A中有一個(gè)元素對(duì)應(yīng)1,一個(gè)元素對(duì)應(yīng)3,另兩個(gè)元素與0對(duì)應(yīng),有C·C=12(種)方法. 所以不同的f共有1+12+6+12=31(個(gè)).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!