新編高考數(shù)學(xué)理一輪資源庫(kù) 第2章學(xué)案5

上傳人:沈*** 文檔編號(hào):62134006 上傳時(shí)間:2022-03-14 格式:DOC 頁(yè)數(shù):9 大?。?26KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)理一輪資源庫(kù) 第2章學(xué)案5_第1頁(yè)
第1頁(yè) / 共9頁(yè)
新編高考數(shù)學(xué)理一輪資源庫(kù) 第2章學(xué)案5_第2頁(yè)
第2頁(yè) / 共9頁(yè)
新編高考數(shù)學(xué)理一輪資源庫(kù) 第2章學(xué)案5_第3頁(yè)
第3頁(yè) / 共9頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)理一輪資源庫(kù) 第2章學(xué)案5》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)理一輪資源庫(kù) 第2章學(xué)案5(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 學(xué)案5 函數(shù)的單調(diào)性與最值 導(dǎo)學(xué)目標(biāo): 1.理解函數(shù)的單調(diào)性、最大值、最小值及其幾何意義.2.會(huì)用定義判斷函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間及會(huì)用單調(diào)性求函數(shù)的最值. 自主梳理 1.單調(diào)性 (1)定義:一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1,x2,當(dāng)x1f(x2)),那么就說(shuō)f(x)在區(qū)間I上是單調(diào)________________. (2)單調(diào)性的定義的等價(jià)形式:設(shè)x1,x2∈[a,b],那么(x1-x2)(f(x1)-f(x2))>0?>0?f(x)在[a,b]上是單調(diào)__

2、______;(x1-x2)(f(x1)-f(x2))<0?<0?f(x)在[a,b]上是單調(diào)________. (3)單調(diào)區(qū)間:如果函數(shù)y=f(x)在某個(gè)區(qū)間上是單調(diào)增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在區(qū)間I上具有單調(diào)性,單調(diào)增區(qū)間和單調(diào)減區(qū)間統(tǒng)稱為_(kāi)_________. (4)函數(shù)y=x+(a>0)在 (-∞,-),(,+∞)上單調(diào)________;在(-,0),(0,)上單調(diào)________;函數(shù)y=x+(a<0)在____________上單調(diào)遞增. 2.最值 一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,如果存在x0∈A,使得對(duì)于任意的x∈A,都有f(x)≤f(x0)(或≥f(

3、x0)),則稱f(x0)為y=f(x)的最____(或最____)值. 自我檢測(cè) 1.若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是________________.(用“單調(diào)減函數(shù)”、“單調(diào)增函數(shù)”、“不單調(diào)”填空) 2.(2011·連云港模擬)設(shè)f(x)是(-∞,+∞)上的增函數(shù),a為實(shí)數(shù),則有f(a2+1)________f(a).(填“>”、“<”或“=”) 3.下列函數(shù)在(0,1)上是增函數(shù)的是________(填序號(hào)). ①y=1-2x;②y=;③y=-x2+2x;④y=5. 4.若f(x)=x2+2(a-1)x+4是區(qū)間(-∞,

4、4]上的減函數(shù),則實(shí)數(shù)a的取值范圍是________. 5.當(dāng)x∈[0,5]時(shí),函數(shù)f(x)=3x2-4x+c的值域?yàn)開(kāi)_____________________. 探究點(diǎn)一 函數(shù)單調(diào)性的判定及證明 例1 設(shè)函數(shù)f(x)=(a>b>0),求f(x)的單調(diào)區(qū)間,并說(shuō)明f(x)在其單調(diào)區(qū)間上的單調(diào)性. 變式遷移1 已知f(x)是定義在R上的增函數(shù),對(duì)x∈R有f(x)>0,且f(5)=1,設(shè)F(x)=f(x)+,討論F(x)的單調(diào)性,并證明你的結(jié)論. 探究點(diǎn)二 函數(shù)的單調(diào)性與最值 例2 已知函數(shù)f(x)=,x∈[1,+∞). (1)當(dāng)a=時(shí),求函數(shù)f(x

5、)的最小值; (2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍. 變式遷移2 已知函數(shù)f(x)=x-+在(1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍. 探究點(diǎn)三 抽象函數(shù)的單調(diào)性 例3 已知函數(shù)f(x)對(duì)于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-. (1)求證:f(x)在R上是減函數(shù); (2)求f(x)在[-3,3]上的最大值和最小值. 變式遷移3 已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f()=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.

6、(1)求f(1)的值; (2)判斷f(x)的單調(diào)性; (3)若f(3)=-1,解不等式f(|x|)<-2. 分類討論及數(shù)形結(jié)合思想 例 (14分)求f(x)=x2-2ax-1在區(qū)間[0,2]上的最大值和最小值. 【答題模板】 解 f(x)=(x-a)2-1-a2,對(duì)稱軸為x=a.[2分] (1)當(dāng)a<0時(shí),由圖①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.[5分] (2)當(dāng)0≤a<1時(shí),由圖②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.[8分] (3)當(dāng)1

7、min=f(a)=-1-a2,f(x)max=f(0)=-1.[11分] (4)當(dāng)a>2時(shí),由圖④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1. 綜上,(1)當(dāng)a<0時(shí),f(x)min=-1,f(x)max=3-4a; (2)當(dāng)0≤a<1時(shí),f(x)min=-1-a2,f(x)max=3-4a; (3)當(dāng)12時(shí),f(x)min=3-4a,f(x)max=-1.[14分] 【突破思維障礙】 (1)二次函數(shù)的單調(diào)區(qū)間是由圖象的對(duì)稱軸確定的.故只需確定對(duì)稱軸與區(qū)間的關(guān)系.由于對(duì)稱

8、軸是x=a,而a的取值不定,從而導(dǎo)致了分類討論. (2)不是應(yīng)該分a<0,0≤a≤2,a>2三種情況討論嗎?為什么成了四種情況?這是由于拋物線的對(duì)稱軸在區(qū)間[0,2]所對(duì)應(yīng)的區(qū)域時(shí),最小值是在頂點(diǎn)處取得,但最大值卻有可能是f(0),也有可能是f(2). 函數(shù)的單調(diào)性的判定與單調(diào)區(qū)間的確定常用方法有: (1)定義法;(2)導(dǎo)數(shù)法;(3)圖象法;(4)單調(diào)性的運(yùn)算性質(zhì). 總結(jié)如下:若函數(shù)f(x),g(x)在區(qū)間I上具有單調(diào)性,則在區(qū)間I上具有以下性質(zhì): (1)f(x)與f(x)+C具有相同的單調(diào)性. (2)f(x)與af(x),當(dāng)a>0時(shí),具有相同的單調(diào)性,當(dāng)a<0時(shí),具有相反的單

9、調(diào)性. (3)當(dāng)f(x)恒不等于零時(shí),f(x)與具有相反的單調(diào)性. (4)當(dāng)f(x),g(x)都是增(減)函數(shù)時(shí),則f(x)+g(x)是增(減)函數(shù). (5)當(dāng)f(x),g(x)都是增(減)函數(shù)時(shí),則f(x)·g(x)當(dāng)兩者都恒大于零時(shí),是增(減)函數(shù);當(dāng)兩者都恒小于零時(shí),是減(增)函數(shù). (滿分:90分) 一、填空題(每小題6分,共48分) 1.(2010·泰州模擬)“a=1”是“函數(shù)f(x)=x2-2ax+3在區(qū)間[1,+∞)上為增函數(shù)”的____________條件. 2.(2009·天津改編)已知函數(shù)f(x)=若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍為_(kāi)____

10、___. 3.(2009·寧夏,海南改編)用min{a,b,c}表示a,b,c三個(gè)數(shù)中的最小值.設(shè)f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為_(kāi)_______. 4.若f(x)=-x2+2ax與g(x)=在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍為_(kāi)_______. 5.已知定義在R上的增函數(shù)f(x),滿足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的符號(hào)為_(kāi)_______(填“正”、“負(fù)”、“不確定”). 6.(2011·淮安調(diào)研)函數(shù)y=-(x-3)|x|的遞增

11、區(qū)間是________. 7.設(shè)f(x)是增函數(shù),則下列結(jié)論一定正確的是________(填序號(hào)). ①y=[f(x)]2是增函數(shù); ②y=是減函數(shù); ③y=-f(x)是減函數(shù); ④y=|f(x)|是增函數(shù). 8.(2011·蘇州質(zhì)檢)設(shè)0

12、0恒成立,求a的取值范圍. 11.(14分)已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),有>0成立. (1)判斷f(x)在[-1,1]上的單調(diào)性,并證明; (2)解不等式:f(x+) 3.③ 4.a(chǎn)≤-3 5.[-+

13、c,55+c] 課堂活動(dòng)區(qū) 例1 解題導(dǎo)引 對(duì)于給出具體解析式的函數(shù),判斷或證明其在某區(qū)間上的單調(diào)性問(wèn)題,可以結(jié)合定義(基本步驟為:取點(diǎn),作差或作商,變形,判斷)來(lái)求解.可導(dǎo)函數(shù)則可以利用導(dǎo)數(shù)求解.有些函數(shù)可以轉(zhuǎn)化為兩個(gè)或多個(gè)基本初等函數(shù),利用其單調(diào)性可以方便求解. 解 在定義域內(nèi)任取x1,x2,且使x10, Δy=f(x2)-f(x1)=- = =. ∵a>b>0,∴b-a<0,∴(b-a)(x2-x1)<0, 又∵x∈(-∞,-b)∪(-b,+∞), ∴只有當(dāng)x1

14、f(x1),F(xiàn)(x2)-F(x1)=[f(x2)+]-[f(x1)+]=[f(x2)-f(x1)][1-], ∵f(x)是R上的增函數(shù),且f(5)=1, ∴當(dāng)x<5時(shí),05時(shí)f(x)>1; ①若x1x1>5,則f(x2)>

15、f(x1)>1, ∴f(x1)·f(x2)>1,∴1->0, ∴F(x2)>F(x1). 綜上,F(xiàn)(x)在(-∞,5)上為減函數(shù),在(5,+∞)上為增函數(shù). 例2 解 (1)當(dāng)a=時(shí),f(x)=x++2, 設(shè)x1,x2∈[1,+∞)且x10, ∴f(x1)-f(x2)<0,∴f(x1)

16、=>0恒成立,等價(jià)于x2+2x+a>0恒成立. 設(shè)y=x2+2x+a,x∈[1,+∞), y=x2+2x+a=(x+1)2+a-1遞增, ∴當(dāng)x=1時(shí),ymin=3+a, 于是當(dāng)且僅當(dāng)ymin=3+a>0時(shí),函數(shù)f(x)恒成立, 故a>-3. 方法二 f(x)=x++2,x∈[1,+∞), 當(dāng)a≥0時(shí),函數(shù)f(x)的值恒為正,滿足題意,當(dāng)a<0時(shí),函數(shù)f(x)遞增; 當(dāng)x=1時(shí),f(x)min=3+a,于是當(dāng)且僅當(dāng)f(x)min=3+a>0時(shí),函數(shù)f(x)>0恒成立,故a>-3. 方法三 在區(qū)間[1,+∞)上f(x)=>0恒成立等價(jià)于x2+2x+a>0恒成立. 即a>-x2

17、-2x恒成立. 又∵x∈[1,+∞),a>-x2-2x恒成立, ∴a應(yīng)大于函數(shù)u=-x2-2x,x∈[1,+∞)的最大值. ∴a>-x2-2x=-(x+1)2+1. 當(dāng)x=1時(shí),u取得最大值-3,∴a>-3. 變式遷移2 解 設(shè)10,即a>-x1x2恒成立. ∵11,-x1x2<-1. ∴a≥-1,∴a的取值范圍是[-1,+∞). 例3 解題導(dǎo)引 (1)對(duì)于抽象函數(shù)的問(wèn)題要根據(jù)題設(shè)

18、及所求的結(jié)論來(lái)適當(dāng)取特殊值說(shuō)明抽象函數(shù)的特點(diǎn).證明f(x)為單調(diào)減函數(shù),首選方法是用單調(diào)性的定義來(lái)證.(2)用函數(shù)的單調(diào)性求最值. 解 (1)方法一 ∵函數(shù)f(x)對(duì)于任意x,y∈R總有f(x)+f(y)=f(x+y), ∴令x=y(tǒng)=0,得f(0)=0. 再令y=-x,得f(-x)=-f(x). 在R上任取x1>x2,則x1-x2>0, f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2). 又∵x>0時(shí),f(x)<0,而x1-x2>0, ∴f(x1-x2)<0,即f(x1)x2,則f(x1)-f(x

19、2) =f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2) =f(x1-x2). 又∵x>0時(shí),f(x)<0.而x1-x2>0,∴f(x1-x2)<0, 即f(x1)

20、遷移3 解 (1)令x1=x2>0, 代入得f(1)=f(x1)-f(x1)=0,故f(1)=0. (2)任取x1,x2∈(0,+∞),且x1>x2,則>1, 由于當(dāng)x>1時(shí),f(x)<0, ∴f()<0,即f(x1)-f(x2)<0,∴f(x1)0時(shí),由f(|x|)<-2,得f(x)9; 當(dāng)x<0時(shí),由f(|x|)<-2,得

21、f(-x)9,故x<-9, ∴不等式的解集為{x|x>9或x<-9}. 課后練習(xí)區(qū) 1.充分不必要 解析 f(x)對(duì)稱軸x=a,當(dāng)a≤1時(shí)f(x)在[1,+∞)上單調(diào)遞增.∴“a=1”為f(x)在[1,+∞)上遞增的充分不必要條件. 2.(-2,1) 解析 由題知f(x)在R上是增函數(shù),由題得2-a2>a,解得-2

22、 解析 f(x)在[a,+∞)上是減函數(shù),對(duì)于g(x),只有當(dāng)a>0時(shí),它有兩個(gè)減區(qū)間為(-∞,-1)和(-1,+∞),故只需區(qū)間[1,2]是f(x)和g(x)的減區(qū)間的子集即可,則a的取值范圍是00,x2+x3>0,x3+x1>0, ∴x1>-x2,x2>-x3,x3>-x1. 又∵f(x1)>f(-x2)=-f(x2), f(x2)>f(-x3)=-f(x3), f(x3)>f(-x1)=-f(x1), ∴f(x1)+f(x2)+f(x3)>-f(x2)-f(x3)-f(x1)

23、. ∴f(x1)+f(x2)+f(x3)>0. 6.[0,] 解析 y=. 畫(huà)圖象如圖所示: 可知遞增區(qū)間為[0,]. 7.③ 解析 舉例:設(shè)f(x)=x,易知①②④均不正確. 8.4 解析 y=+=,當(dāng)00,x2-x1>0. f(x1)-f(x2)=(a-)-(a-) =-=<0.………………………………………………………………………(5分) ∴f(x1)

24、………………………………(6分) (2)解 由題意a-<2x在(1,+∞)上恒成立, 設(shè)h(x)=2x+,則a0,x∈(1,+∞), ∴h(x)在(1,+∞)上單調(diào)遞增.………………………………………………………(12分) 故a≤h(1),即a≤3. ∴a的取值范圍為(-∞,3].…………………………………………………………(14分) 10.解 設(shè)f(x)的最小值為g(a),則只需g(a)≥0, 由題意知,f(x)的對(duì)稱軸為-. (1)當(dāng)-<-2,即a>4時(shí)

25、, g(a)=f(-2)=7-3a≥0,得a≤. 又a>4,故此時(shí)的a不存在.…………………………………………………………(4分) (2)當(dāng)-∈[-2,2],即-4≤a≤4時(shí), g(a)=f(-)=3-a-≥0得-6≤a≤2. 又-4≤a≤4,故-4≤a≤2.……………………………………………………………(8分) (3)當(dāng)->2,即a<-4時(shí), g(a)=f(2)=7+a≥0得a≥-7. 又a<-4,故-7≤a<-4.………………………………………………………………(13分) 綜上得所求a的取值范圍是-7≤a≤2.………………………………………………(14分) 11.解 (

26、1)任取x1,x2∈[-1,1],且x10,x1-x2<0, ∴f(x1)-f(x2)<0,即f(x1)

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!