《新編備戰(zhàn)高考數(shù)學 回扣突破練 第03練 基本函數(shù)性質(zhì)與圖像 文》由會員分享,可在線閱讀,更多相關《新編備戰(zhàn)高考數(shù)學 回扣突破練 第03練 基本函數(shù)性質(zhì)與圖像 文(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第3練 常見基本函數(shù)性質(zhì)與圖像
一.強化題型考點對對練
1. (冪函數(shù))【河南省天一大聯(lián)考(二)】已知點在冪函數(shù)的圖象上,設, , ,則的大小關系為( )
A. B. C. D.
【答案】A
2.(二次函數(shù)及其應用)若函數(shù)的圖象關于直線對稱,則的最小值為( )
A. B. C. D.
【答案】C
【解析】 由題意得 是函數(shù)零點,因此 為方程 的根,即 , ,當 時,取最小值 選C.
3.(指數(shù)函數(shù)的應用)【山東省青島市期中聯(lián)考】已知,則( )
A. B. C. D.
2、
【答案】C
【解析】,冪函數(shù) 在 上遞增,指數(shù)函數(shù)在 上遞增遞減, , ,即,故選C.
4.(與對數(shù)函數(shù)相關的綜合問題)若函數(shù)(且)在上既是奇函數(shù)又是增函數(shù),則函數(shù)的大致圖象是( )
【答案】B
5.(指數(shù)函數(shù)與對數(shù)函數(shù)的結合)在平面直角坐標系中,如果不同的兩點, 在函數(shù)的圖象上,則稱是函數(shù)的一組關于軸的對稱點(與視為同一組),則函數(shù)關于軸的對稱點的組數(shù)為( )
A. 0 B. 1 C. 2 D. 4
【答案】C
【解析】根據(jù)題意,在同一坐標系內(nèi),作出,的圖象,
根據(jù)定義,可以知道函數(shù)關于軸的對稱點的組數(shù),就是圖象交點的個數(shù),所以關于
3、軸的對稱點的組數(shù)為2,所以C選項是正確的.
6. (指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì)的結合)若, , ,則大小關系為( )
A. B. C. D.
【答案】D
7.(對數(shù)函數(shù)與二次函數(shù)圖象與性質(zhì)的結合)已知函數(shù),若對任意的,不等式恒成立,則實數(shù)的取值范圍為( )
A. B. C. D.
【答案】B
【解析】易知函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以函數(shù)在處取得最大值,所以有,解得,故選B.
8.(與指數(shù)函數(shù)相關的綜合問題)【湖北省襄陽市四校聯(lián)考】 已知函數(shù)且,其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成
4、立,則實數(shù)的取值范圍是__________.
【答案】
【解析】由已知得 …①,所以 ,又因為為奇函數(shù),為偶函數(shù),所以,…②.聯(lián)立解得 , ,代入不等式得:在上恒成立.令
則.則原式可化為, 恒成立.顯然當時,右式取得最大值為﹣ ,即有.故答案為.
9. (指數(shù)函數(shù)與對數(shù)函數(shù)的結合)【高三福建福清期中聯(lián)考】設,若,則( )
A. B. C. D.
【答案】A
10.(二次函數(shù)及其應用)【上學期陜西西安大聯(lián)考(一)】已知函數(shù)的值域是,則實數(shù)的取值范圍是
A. B. C. D.
【答案】C
【解析】 ∴當 時, 由
5、解得 ∴要使函數(shù)在 的值域是 則 ,故選C.
11.(函數(shù)的綜合問題)已知函數(shù),設表示, 二者中較大的一個.函數(shù).若,且, ,使得成立,則的最小值為( )
A. -5 B. -4 C. D. -3
【答案】A
【解析】由題意得 . 作函數(shù) 的圖像如圖所示.當 時.方程兩根分別為 和 .則 的最小值為 .
12.(與對數(shù)函數(shù)相關的綜合問題)【上海市七寶中學第一次月考】若對任意恒成立,則實數(shù)的取值范圍是________
【答案】.
13.(指數(shù)函數(shù)與對數(shù)函數(shù)的結合)函數(shù)的定義域為實數(shù)集,,對于任意都有,若在區(qū)間內(nèi)函數(shù)恰有三個不同的零點,則實數(shù)的取
6、值范圍是__________.
【答案】
【解析】∵ , 是以 為周期的函數(shù),若在區(qū)間上函數(shù) 恰有三個不同的零點,則 和 在上有3個不同的交點,畫出函數(shù)函數(shù)在上的圖象,如圖示: ,由,結合圖象得:,故答案為:.
14. (對數(shù)函數(shù)的圖象與性質(zhì))設函數(shù),且,則 __________.
【答案】
【解析】,故
二.易錯問題糾錯練
15.(解題目標不明確而致錯)已知函數(shù),若關于的方程有8個不等的實數(shù)根,則的取值范圍是( )
A. B. C. D.
【答案】D
【注意問題】復合方程的根的個數(shù)問題,可以通過換元,分解為兩個簡單方程的根的問題,
7、轉(zhuǎn)化時注意結合已知條件.
16. (不能靈活轉(zhuǎn)化而致錯)(與對數(shù)函數(shù)相關的綜合問題)已知函數(shù)與的圖象上存在關于對稱的點,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】D
【注意問題】將點的對稱問題轉(zhuǎn)化為圖象有交點問題,進而轉(zhuǎn)化為方程有解問題.
三.新題好題好好練
17.【上海市上海師大附中期中】若,則函數(shù)的兩個零點分別位于區(qū)間( ) .
A. 和內(nèi) B. 和內(nèi) C. 和內(nèi) D. 和內(nèi)
【答案】A
【解析】因為,所以, , ,由函數(shù)零點存在性定理知:在區(qū)間內(nèi)分別存在一個零點,又函數(shù)是二次函數(shù),最多有兩個零點,因
8、此函數(shù)的兩個零點分別位于區(qū)間內(nèi),故選A.
18.【甘肅省會寧月考】已知函數(shù),滿足對任意,都有成立,則的取值范圍是__________.
【答案】
【解析】因為函數(shù)對任意,都有成立,即函數(shù)為減函數(shù),故需滿足,解得,故答案為.
19.設,, ,則( ?。?
A. B. C. D.
【答案】B
20.已知指數(shù)函數(shù)的圖象過點,則函數(shù)是( ?。?
A.奇函數(shù) B.偶函數(shù) C.既是奇函數(shù)又是偶函數(shù) D.非奇非偶函數(shù)
【答案】A
【解析】設指數(shù)函數(shù),因為圖象過點,則,解得,所以函數(shù)的解析式為,所以,則由,所以函數(shù)為奇函數(shù),故選A.
21.【北京市海淀區(qū)期中】已知函數(shù)是定義在上的奇函數(shù),當時, ,其中.
①________; ② 若的值域是,則的取值范圍是________.
【答案】 (1) (2)
【解析】函數(shù)是定義在上的奇函數(shù), , 時, , 時, , 時, 時, ; 時, , 值域為, ,得, , 值域為, , 時可得值域為, 或, 取值的范圍是,故答案為(1);(2).
22.已知冪函數(shù)的圖象過點,定義域為的偶函數(shù)在內(nèi)是增函數(shù),,則不等式的解集為___________.
【答案】