《新編一輪創(chuàng)新思維文數人教版A版練習:第二章 第九節(jié) 函數模型及應用 Word版含解析》由會員分享,可在線閱讀,更多相關《新編一輪創(chuàng)新思維文數人教版A版練習:第二章 第九節(jié) 函數模型及應用 Word版含解析(7頁珍藏版)》請在裝配圖網上搜索。
1、
課時規(guī)范練
A組 基礎對點練
1.下列函數中隨x的增大而增長速度最快的是( )
A.v=·ex B.v=100ln x
C.v=x100 D.v=100×2x
答案:A
2.(20xx·開封質檢)用長度為24(單位:米)的材料圍成一矩形場地,中間加兩道隔墻,要使矩形的面積最大,則隔墻的長度為( )
A.3米 B.4米
C.6米 D.12米
解析:設隔墻的長為x(0<x<6)米,矩形的面積為y平方米,則y=x×=2x(6-x)=-2(x-3)2+18,所以當x=3時,y取得最大值.
答案:A
3.已知A,B兩地相距150千米,某人開汽車以60千米/小
2、時的速度從A地到達B地,在B地停留1小時后再以50千米/小時的速度返回A地,把汽車離開A地的距離x表示為時間t(小時)的函數表達式是( )
A.x=60t
B.x=60t+50t
C.x=
D.x=
解析:當0≤t≤2.5時,x=60t;
當2.5<t≤3.5時,x=150;當3.5<t≤6.5時,x=150-50(t-3.5).
答案:D
4.在某個物理實驗中,測量得變量x和變量y的幾組數據,如下表:
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
則對x,y最適合的擬合函數是( )
A.y=2x B.y
3、=x2-1
C.y=2x-2 D.y=log2x
解析:根據x=0.50,y=-0.99,代入各選項計算,可以排除A;根據x=2.01,y=0.98,代入各選項計算,可以排除B,C;將各數據代入函數y=log2x,可知滿足題意.故選D.
答案:D
5.某商場銷售A型商品,已知該商品的進價是每件3元,且銷售單價與日均銷售量的關系如表所示:
銷售單價/元
4
5
6
7
8
9
10
日均銷售量/件
400
360
320
280
240
200
160
請根據以上數據分析,要使該商品的日均銷售利潤最大,則此商品的定價(單位:元/件)應為( )
A.
4、4 B.5.5
C.8.5 D.10
解析:由題意可設定價為x元/件,利潤為y元,則y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故當x=8.5時,y有最大值,故選C.
答案:C
6.(20xx·濟南模擬)某種動物繁殖量y只與時間x年的關系為y=alog3(x+1),設這種動物第2年有100只,到第8年它們將發(fā)展到( )
A.200只 B.300只
C.400只 D.500只
解析:∵繁殖數量y只與時間x年的關系為y=alog3(x+1),這種動物第2年有100只,
∴100=alog3(2+1),∴a=100,
∴y=100log3(x+
5、1),
∴當x=8時,y=100 log3(8+1)=100×2=200.故選A.
答案:A
7.
某廠有許多形狀為直角梯形的鐵皮邊角料,如圖,為降低消耗,開源節(jié)流,現要從這些邊角料上截取矩形鐵片(如圖中陰影部分)備用,當截取的矩形面積最大時,矩形兩邊長x,y應為( )
A.x=15,y=12 B.x=12,y=15
C.x=14,y=10 D.x=10,y=14
解析:由三角形相似得=,
得x=(24-y),由0<x≤20得,8≤y<24,
所以S=xy=-(y-12)2+180,
所以當y=12時,S有最大值,此時x=15.
答案:A
8.世界人口在過去4
6、0年翻了一番,則每年人口平均增長率約是(參考數據lg 2≈0.301 0,100.007 5≈1.017)( )
A.1.5% B.1.6%
C.1.7% D.1.8%
解析:由題意得(1+x)40=2,
∴40lg(1+x)=lg 2,∴l(xiāng)g(1+x)≈0.007 5,
∴1+x=100.007 5,∴x≈0.017=1.7%.
故選C.
答案:C
9.當生物死亡后,其體內原有的碳14的含量大約每經過5 730年衰減為原來的一半,這個時間稱為“半衰期”.當死亡生物體內的碳14含量不足死亡前的千分之一時,用一般的放射性探測器就測不到了.若某死亡生物體內的碳14用該放射性探
7、測器探測不到,則它經過的“半衰期”個數至少是( )
A.8 B.9
C.10 D.11
解析:設該死亡生物體內原有的碳14的含量為1,則經過n個“半衰期”后的含量為n,
由n<,得n≥10,
所以,若某死亡生物體內的碳14用該放射性探測器探測不到,則它至少需要經過10個“半衰期”.故選C.
答案:C
10.某大型民企為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該民企全年投入研發(fā)資金130萬元,在此基礎上,每年投入的研發(fā)資金比上一年增長12%,則該民企全年投入的研發(fā)資金開始超過200萬元的年份是(參考數據:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30)(
8、 )
A. B.
C. D.
解析:設后的第n年,該公司全年投入的研發(fā)資金開始超過200萬元,由130(1+12%)n>200,得1.12n>,兩邊取對數,得n>≈=,∴n≥4,∴從開始,該公司全年投入的研發(fā)資金開始超過200萬元.
答案:D
11.某種病毒每經過30分鐘由1個病毒可分裂成2個病毒,經過x小時后,病毒個數y與時間x(小時)的函數關系式為________,經過5小時,1個病毒能分裂成________個.
解析:設原有1個病毒,
經過1個30分鐘有2=21個病毒;
經過2個30分鐘有2×2=4=22個病毒;
經過3個30分鐘有4×2=8=23個病毒;
……
9、
經過個30分鐘有22x=4x個病毒,
∴病毒個數y與時間x(小時)的函數關系式為y=4x.
∴經過5小時,1個病毒能分裂成45=1 024個.
答案:y=4x 1 024
12.(20xx·南昌模擬)某電信公司推出兩種手機收費方式:A種方式是月租20元,B種方式是月租0元.一個月的本地網內通話時間t(分鐘)與電話費S(元)的函數關系如圖所示,當通話150分鐘時,這兩種方式的電話費相差__________.
解析:依題意可設SA(t)=20+kt,SB(t)=mt.
又SA(100)=SB(100),
∴100k+20=100m,得k-m=-0.2,
于是SA(150)-S
10、B(150)=20+150k-150m
=20+150×(-0.2)=-10,即兩種方式的電話費相差10元.
答案:10元
13.某商家一月份至五月份累計銷售額達3 860萬元,預測六月份銷售額為500萬元,七月份銷售額比六月份遞增x%,八月份銷售額比七月份遞增x%,九、十月份銷售總額與七、八月份銷售總額相等.若一月份至十月份銷售總額至少達7 000萬元,則x的最小值是________.
解析:七月份的銷售額為500(1+x%),八月份的銷售額為500(1+x%)2,則一月份到十月份的銷售總額是3 860+500+2[500(1+x%)+500(1+x%)2],根據題意有3 860+5
11、00+2[500(1+x%)+500(1+x%)2]≥7 000,即25(1+x%)+25(1+x%)2≥66,令t=1+x%,則25t2+25t-66≥0,解得t≥或者t≤-(舍去),故1+x%≥,解得x≥20.
答案:20
14.某市用37輛汽車往災區(qū)運送一批救災物資,假設以v km/h的速度直達災區(qū),已知某市到災區(qū)公路線長400 km,為了安全起見,兩輛汽車的間距不得小于()2km,那么這批物資全部到達災區(qū)的最少時間是________h(車身長度不計).
解析:設全部物資到達災區(qū)所需時間為t h,由題意可知,t相當于最后一輛車行駛了(36×2+400) km所用的時間,因此,t=≥
12、12,當且僅當=,即v=時取“=”.
故這些汽車以 km/h的速度勻速行駛時,所需時間最少,最少時間為12 h.
答案:12
B組 能力提升練
1.(20xx·重慶巴蜀中學模擬)某市近郊有一塊大約500米×500米的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,要建設如圖所示的一個總面積為3 000平方米的矩形場地,其中陰影部分為通道,通道寬度為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S平方米.
(1)分別用x表示y和S的函數關系式,并給出定義域;
(2)怎樣設計能使S取得最大值,并求出最大值.
解析:(1)由
13、已知xy=3 000,得y=,其定義域是(6, 500).
S=(x-4)a+(x-6)a=(2x-10)a,
∵2a+6=y(tǒng),∴a=-3=-3,
∴S=(2x-10)·=3 030-,其定義域是(6,500).
(2)S=3 030-≤3 030-2=3 030-2×300=2 430,
當且僅當=6x,即x=50∈(6,500)時,等號成立,
此時,x=50,y=60,Smax=2 430.
∴設計x=50米,y=60米,a=27米時,運動場地面積最大,最大值為2 430米.
2.為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔
14、熱層建造成本為6萬元.該建筑物每年的能源消耗費用C萬元與隔熱層厚度x厘米滿足關系:C(x)=(0≤x≤10,k為常數),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最?。坎⑶笞钚≈担?
解析:(1)當x=0時,C=8,∴k=40,∴C(x)=.
∴f(x)=6x+=6x+(0≤x≤10).
(2)f(x)=2(3x+5)+-10,
設3x+5=t,t∈[5,35],
∴y=2t+-10≥2-10=70,
當且僅當2t=,即t=20時等號成立,這時x=5
15、,f(x)的最小值為70,
即隔熱層修建5 cm厚時,總費用f(x)達到最小,最小值為70萬元.
3.某工廠生產某種產品,每日的成本C(單位:萬元)與日產量x(單位:噸)滿足函數關系式C=3+x,每日的銷售額S(單位:萬元)與日產量x的函數關系式S=已知每日的利潤L=S-C,且當x=2時,L=3.
(1)求k的值;
(2)當日產量為多少噸時,每日的利潤可以達到最大,并求出最大值.
解析:(1)由題意可得,
L=
因為x=2時,L=3,所以3=2×2++2.
解得k=18.
(2)當0<x<6時,L=2x++2,
所以L=2(x-8)++18=-+18≤-2+18=6.
當
16、且僅當2(8-x)=,即x=5時取得等號.
當x≥6時,L=11-x≤5.
所以當x=5時,L取得最大值6.
所以當日產量為5噸時,每日的利潤可以達到最大值6萬元.
4.隨著中國一帶一路的深入發(fā)展,中國某陶瓷廠為了適應發(fā)展,制定了以下生產計劃,每天生產陶瓷的固定成本為14 000元,每生產一件產品,成本增加210元.已知該產品的日銷售量f(x)(單位:件)與產量x(單位:件)之間的關系式為f(x)=,每件產品的售價g(x)(單位:元)與產量x之間的關系式為g(x)=.
(1)寫出該陶瓷廠的日銷售利潤Q(x)(單位:元)與產量x之間的關系式;
(2)若要使得日銷售利潤最大,則該陶瓷廠
17、每天應生產多少件產品,并求出最大利潤.
解析:(1)設總成本為c(x)(單位:元),則c(x)=14 000+210x,
所以日銷售利潤Q(x)=f(x)g(x)-c(x)
=
(2)由(1)知,當0≤x≤400時,
Q′(x)=-x2+x-210.
令Q′(x)=0,解得x=100或x=700(舍去).
易知當x∈[0,100)時,Q′(x)<0;
當x∈(100,400]時,Q′(x)>0.
所以Q(x)在區(qū)間[0,100)上單調遞減,
在區(qū)間(100,400]上單調遞增.
因為Q(0)=-14 000,Q(400)=30 000,
所以Q(x)在x=400時取到最大值,且最大值為30 000.
當400<x<500時,Q(x)=-x2+834x-143 600.
當x==417時,Q(x)取得最大值,最大值為Q(x)max=-4172+834×417-143 600=30 289.
綜上所述,若要使得日銷售利潤最大,則該陶瓷廠每天應生產417件產品,其最大利潤為30 289元.