新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第四章】三角函數(shù)、解三角形 學(xué)案17
《新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第四章】三角函數(shù)、解三角形 學(xué)案17》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)人教A版理科含答案導(dǎo)學(xué)案【第四章】三角函數(shù)、解三角形 學(xué)案17(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料 第四章 三角函數(shù)與三角恒等變換 學(xué)案17 任意角的三角函數(shù) 導(dǎo)學(xué)目標(biāo): 1.了解任意角的概念.2.了解弧度制的概念,能進(jìn)行弧度與角度的互化.3.理解任意角的三角函數(shù)(正弦、余弦、正切)的定義. 自主梳理 1.任意角的概念 角可以看成平面內(nèi)一條射線OA繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置OB所成的圖形.旋轉(zhuǎn)開(kāi)始時(shí)的射線OA叫做角的________,射線的端點(diǎn)O叫做角的________,旋轉(zhuǎn)終止位置的射線OB叫做角的________,按______時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫做正角,按______時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫做負(fù)角.若一條射線沒(méi)作任何旋轉(zhuǎn),稱它形成了一個(gè)
2、________角. (1)象限角 使角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,角的終邊落在第幾象限,就說(shuō)這個(gè)角是__________角. (2)象限界角(即終邊在坐標(biāo)軸上的角) 終邊在x軸上的角表示為_(kāi)___________________; 終邊在y軸上的角表示為_(kāi)_________________________________________; 終邊落在坐標(biāo)軸上的角可表示為_(kāi)___________________________. (3)終邊相同的角 所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合______________________或_______
3、___________________,前者α用角度制表示,后者α用弧度制表示. (4)弧度制 把長(zhǎng)度等于________長(zhǎng)的弧所對(duì)的__________叫1弧度的角.以弧度作為單位來(lái)度量角的單位制,叫做________,它的單位符號(hào)是________,讀作________,通常略去不寫(xiě). (5)度與弧度的換算關(guān)系 360°=______ rad;180°=____ rad;1°=________ rad; 1 rad=_______________≈57.30°. (6)弧長(zhǎng)公式與扇形面積公式 l=________,即弧長(zhǎng)等于__________________________
4、_______________________. S扇=________=____________. 2.三角函數(shù)的定義 任意角的三角函數(shù)定義:設(shè)α是一個(gè)任意角,它的終邊與單位圓交于點(diǎn)P(x,y),那么①____叫做α的正弦,記作sin α,即sin α=y(tǒng);②____叫做α的余弦,記作cos α,即cos α=x;③________叫做α的正切,記作tan α,即tan α= (x≠0). (1)三角函數(shù)值的符號(hào) 各象限的三角函數(shù)值的符號(hào)如下圖所示,三角函數(shù)正值歌:一全正,二正弦,三正切,四余弦. (2)三角函數(shù)線 下圖中有向線段MP,OM,AT分別表示__________
5、,__________________和____________. 自我檢測(cè) 1.“α=”是“cos 2α=”的 ( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 2.(2011·濟(jì)寧模擬)點(diǎn)P(tan 2 009°,cos 2 009°)位于 ( ) A.第一象限 B.第二象限 C.第三象限
6、 D.第四象限 3.(2010·山東青島高三教學(xué)質(zhì)量檢測(cè))已知sin α<0且tan α>0,則角α是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 4.已知角α的終邊上一點(diǎn)的坐標(biāo)為,則角α的最小正值為 ( ) A. B. C. D. 探究點(diǎn)一 角的概念 例1 (1)如果角α是第三象限角,那么-α,π-α,π+α角的終邊落在第幾象限; (2)寫(xiě)出終邊落
7、在直線y=x上的角的集合; (3)若θ=168°+k·360° (k∈Z),求在[0°,360°)內(nèi)終邊與角的終邊相同的角. 變式遷移1 若α是第二象限的角,試分別確定2α,的終邊所在位置. 探究點(diǎn)二 弧長(zhǎng)與扇形面積 例2 (2011·金華模擬)已知一個(gè)扇形的圓心角是α,0<α<2π,其所在圓的半徑是R. (1)若α=60°,R=10 cm,求扇形的弧長(zhǎng)及該弧所在弓形的面積; (2)若扇形的周長(zhǎng)是一定值C(C>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積? 變式遷移2 (1)已知扇形的周長(zhǎng)為10,面積為4,求扇形中心角的弧度數(shù); (2
8、)已知扇形的周長(zhǎng)為40,當(dāng)它的半徑和中心角取何值時(shí),才能使扇形的面積最大?最大面積是多少? 探究點(diǎn)三 三角函數(shù)的定義 例3 已知角α的終邊在直線3x+4y=0上,求sin α,cos α,tan α的值. 變式遷移3 已知角α的終邊經(jīng)過(guò)點(diǎn)P(-4a,3a) (a≠0),求sin α,cos α,tan α的值. 1.角的度量由原來(lái)的角度制改換為弧度制,要養(yǎng)成用弧度表示角的習(xí)慣.象限角的判斷,終邊相同的角的表示,弧度、弧長(zhǎng)公式和扇形面積公式的運(yùn)用是學(xué)習(xí)三角函數(shù)的基礎(chǔ). 2.三角函數(shù)都是以角為自變量(用弧度表示),以比值為函數(shù)值的函數(shù),
9、是從實(shí)數(shù)集到實(shí)數(shù)集的映射,注意兩種定義法,即坐標(biāo)法和單位圓法.
(滿分:75分)
一、選擇題(每小題5分,共25分)
1.(2011·宣城模擬)點(diǎn)P從(1,0)出發(fā),沿單位圓x2+y2=1逆時(shí)針?lè)较蜻\(yùn)動(dòng)弧長(zhǎng)到達(dá)Q,則Q的坐標(biāo)為 ( )
A.(-,) B.(-,-)
C.(-,-) D.(-,)
2.若0
10、 ( )
A. 11、 B.
C. D.2sin
5.已知θ∈且sin θ+cos θ=a,其中a∈(0,1),則關(guān)于tan θ的值,以下四個(gè)答案中,可能正確的是 ( )
A.-3 B.3或
C.- D.-3或-
題號(hào)
1
2
3
4
5
答案
二、填空題(每小題 12、4分,共12分)
6.已知點(diǎn)P(sin α-cos α,tan α)在第一象限,且α∈[0,2π],則α的取值范圍是________________.
7.(2011·龍巖模擬)已知點(diǎn)P落在角θ的終邊上,且θ∈[0,2π),則θ的值為_(kāi)_______.
8.閱讀下列命題:
①若點(diǎn)P(a,2a) (a≠0)為角α終邊上一點(diǎn),則sin α=;
②同時(shí)滿足sin α=,cos α=的角有且只有一個(gè);
③設(shè)tan α=且π<α<,則sin α=-;
④設(shè)cos(sin θ)·tan(cos θ)>0 (θ為象限角),則θ在第一象限.其中正確命題為_(kāi)_______.(將正確命題的序號(hào)填在橫 13、線上)
三、解答題(共38分)
9.(12分)已知扇形OAB的圓心角α為120°,半徑長(zhǎng)為6,
(1)求的弧長(zhǎng);
(2)求弓形OAB的面積.
10.(12分)在單位圓中畫(huà)出適合下列條件的角α的終邊的范圍,并由此寫(xiě)出角α的集合:
(1)sin α≥;
(2)cos α≤-.
11.(14分)(2011·舟山月考)已知角α終邊經(jīng)過(guò)點(diǎn)P(x,-) (x≠0),且cos α=x.求sin α+的值.
答案 自主梳理
1.始邊 頂點(diǎn) 終邊 逆 順 零 (1)第幾象限
(2){α|α=kπ,k∈Z} (3){β|β=α+k·360°,k∈ 14、Z} {β|β=α+2kπ,k∈Z} (4)半徑 圓心角 弧度制 rad 弧度 (5)2π π ° (6)|α|·r 弧所對(duì)的圓心角(弧度數(shù))的絕對(duì)值與半徑的積 lr |α|r2 2.①y ②x?、邸?2)α的正弦線 α的余弦線 α的正切線
自我檢測(cè)
1.A 2.D 3.C 4.D
課堂活動(dòng)區(qū)
例1 解題導(dǎo)引 (1)一般地,角α與-α終邊關(guān)于x軸對(duì)稱;角α與π-α終邊關(guān)于y軸對(duì)稱;角α與π+α終邊關(guān)于原點(diǎn)對(duì)稱.
(2)利用終邊相同的角的集合S={β|β=2kπ+α,k∈Z}判斷一個(gè)角β所在的象限時(shí),只需把這個(gè)角寫(xiě)成[0,2π)范圍內(nèi)的一角α與2π的整數(shù)倍,然后判斷角α的象限.
( 15、3)利用終邊相同的角的集合可以求適合某些條件的角,方法為先寫(xiě)出與這個(gè)角的終邊相同的所有角的集合,然后通過(guò)對(duì)集合參數(shù)k賦值來(lái)求得所需角.
解 (1)π+2kπ<α<+2kπ (k∈Z),
∴--2kπ<-α<-π-2kπ(k∈Z),
即+2kπ<-α<π+2kπ (k∈Z).①
∴-α角終邊在第二象限.
又由①各邊都加上π,得+2kπ<π-α<2π+2kπ (k∈Z).
∴π-α是第四象限角.
同理可知,π+α是第一象限角.
(2)在(0,π)內(nèi)終邊在直線y=x上的角是,
∴終邊在直線y=x上的角的集合為
.
(3)∵θ=168°+k·360° (k∈Z),
∴=56°+ 16、k·120° (k∈Z).
∵0°≤56°+k·120°<360°,
∴k=0,1,2時(shí),∈[0°,360°).
故在[0°,360°)內(nèi)終邊與角的終邊相同的角是56°,176°,296°.
變式遷移1 解 ∵α是第二象限的角,
∴k·360°+90°<α 17、
當(dāng)k=2n+1 (n∈Z)時(shí),
n·360°+225°< 18、,即2R+αR=C,
S扇=αR2=·αR·R=·αR·2R
≤·2=·2=.
當(dāng)且僅當(dāng)αR=2R,即α=2時(shí),等號(hào)成立,即當(dāng)α為2弧度時(shí),該扇形有最大面積C2.
變式遷移2 解 設(shè)扇形半徑為R,圓心角為θ,所對(duì)的弧長(zhǎng)為l.
(1)依題意,得
∴2θ2-17θ+8=0.∴θ=8或.
∵8>2π,舍去,∴θ=.
(2)扇形的周長(zhǎng)為40,即θR+2R=40,
S=lR=θR2=θR·2R≤2=100.
當(dāng)且僅當(dāng)θR=2R,即R=10,θ=2時(shí)扇形面積取得最大值,最大值為100.
例3 解題導(dǎo)引 某角的三角函數(shù)值只與該角終邊所在位置有關(guān),當(dāng)終邊確定時(shí)三角函數(shù)值就相應(yīng)確定了.但若 19、終邊落在某條直線上時(shí),這時(shí)終邊實(shí)際上有兩個(gè),因此對(duì)應(yīng)的函數(shù)值有兩組,要分別求解.
解 ∵角α的終邊在直線3x+4y=0上,
∴在角α的終邊上任取一點(diǎn)P(4t,-3t) (t≠0),
則x=4t,y=-3t,
r===5|t|,
當(dāng)t>0時(shí),r=5t,
sin α===-,
cos α===,
tan α===-;
當(dāng)t<0時(shí),r=-5t,
sin α===,
cos α===-,
tan α===-.
綜上可知,t>0時(shí),sin α=-,cos α=,tan α=-;
t<0時(shí),sin α=,cos α=-,tan α=-.
變式遷移3 解 r==5|a|.
若 20、a>0,則r=5a,α角在第二象限,
sin α===,
cos α===-,
tan α===-.
若a<0,則r=-5a,α角在第四象限,
sin α===-,cos α===,
tan α===-.
課后練習(xí)區(qū)
1.A 2.B 3.D 4.C 5.C
6.∪
解析 由已知得
∴+2kπ<α<+2kπ或π+2kπ<α<+2kπ,k∈Z.
∵0≤α≤2π,∴當(dāng)k=0時(shí),<α<或π<α<.
7.π
解析 由三角函數(shù)的定義,tan θ===-1.
又∵sin >0,cos <0,∴P在第四象限,∴θ=.
8.③
解析 ①中,當(dāng)α在第三象限時(shí),
sin α=-, 21、故①錯(cuò).
②中,同時(shí)滿足sin α=,cos α=的角為α=2kπ+ (k∈Z),不只有一個(gè),故②錯(cuò).③正確.④θ可能在第一象限或第四象限,故④錯(cuò).綜上選③.
9.解 (1)∵α=120°=,r=6,
∴的弧長(zhǎng)為l=αr=×6=4π.……………………………………………………(4分)
(2)∵S扇形OAB=lr=×4π×6=12π,……………………………………………………(7分)
S△ABO=r2·sin =×62×
=9,……………………………………………………………………………………(10分)
∴S弓形OAB=S扇形OAB-S△ABO=12π-9.……………………………………… 22、………(12分)
10.解 (1)
作直線y=交單位圓于A、B兩點(diǎn),連結(jié)OA、OB,則OA與OB圍成的區(qū)域即為角α的集合為.…………………………………………………(6分)
(2)
作直線x=-交單位圓于C、D兩點(diǎn),連結(jié)OC、OD,則OC與OD圍成的區(qū)域(圖中陰影部分)即為角α終邊的范圍.故滿足條件的角α的集合為
.……………………………………………………(12分)
11.解 ∵P(x,-) (x≠0),
∴點(diǎn)P到原點(diǎn)的距離r=.…………………………………………………………(2分)
又cos α=x,
∴cos α==x.∵x≠0,∴x=±,
∴r=2.…………………………………………………………………………………(6分)
當(dāng)x=時(shí),P點(diǎn)坐標(biāo)為(,-),
由三角函數(shù)的定義,
有sin α=-,=-,
∴sin α+=--=-;……………………………………………(10分)
當(dāng)x=-時(shí),
同樣可求得sin α+=.………………………………………………(14分)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見(jiàn)突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車(chē)場(chǎng)管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門(mén)領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)