多自由度機械臂控制算法設(shè)計

上傳人:無*** 文檔編號:63054162 上傳時間:2022-03-17 格式:DOCX 頁數(shù):41 大?。?05.27KB
收藏 版權(quán)申訴 舉報 下載
多自由度機械臂控制算法設(shè)計_第1頁
第1頁 / 共41頁
多自由度機械臂控制算法設(shè)計_第2頁
第2頁 / 共41頁
多自由度機械臂控制算法設(shè)計_第3頁
第3頁 / 共41頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《多自由度機械臂控制算法設(shè)計》由會員分享,可在線閱讀,更多相關(guān)《多自由度機械臂控制算法設(shè)計(41頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 畢業(yè)設(shè)計(論文)專用紙 摘 要 機器人是一種能夠進行編程并在自動控制下執(zhí)行某些操作和移動作業(yè)任務(wù)的機械裝置。而機械臂作為機器人最主要的執(zhí)行機構(gòu),是一個十分復(fù)雜的多輸入多輸出非線性系統(tǒng),它具有時變、強耦合和非線性的動力學(xué)特征,因其控制的復(fù)雜性引起了相關(guān)從業(yè)人員的廣泛關(guān)注。隨著時代的進步,像軍事制造、工業(yè)生產(chǎn)、日常生活及教育娛樂等各個領(lǐng)域?qū)C器臂控制技術(shù)應(yīng)用需求逐漸加大,從而使得設(shè)計一套工作空間大,運動靈活的多自由度機器臂尤為重要。 機械手臂運行軌跡追蹤控制技術(shù)有包括:adaptive control(自適應(yīng)控制)、smvsc(滑模變結(jié)構(gòu)控制)、Robust adaptive con

2、trol(魯棒自適應(yīng)控制)、Fuzzy adaptive(模糊自適應(yīng))等四大類。本文主要運用模糊PID控制設(shè)計二自由度機械臂控制算法,該控制方法具有模糊控制靈活和適應(yīng)性強的優(yōu)點,也具有經(jīng)典PID控制精度高的特點。 本文圍繞二自由度機械臂控制算法設(shè)計,首先建立二自由度關(guān)節(jié)型機械臂的數(shù)學(xué)模型,即二自由度機械臂輸入驅(qū)動力矢量和輸出轉(zhuǎn)動角度矢量之間的函數(shù)關(guān)系。然后運用模糊PID控制設(shè)計一套機械臂軌跡規(guī)劃算法,能夠根據(jù)使用者的作業(yè)任務(wù)要求,求出二自由度機械臂終端執(zhí)行器的軌跡。并研究如何對于給定的系統(tǒng)設(shè)計出PID控制器,實現(xiàn)控制系統(tǒng)的輸出對參考輸入跟蹤,以及對擾動輸入響應(yīng)具有較小的振幅,且能夠衰減到零即

3、無穩(wěn)態(tài)誤差。最后給出了基于MATLAB/SIMULINK軟件的案例分析,闡釋模糊PID控制算法行之有效性。 關(guān)鍵詞:多自由度,機械臂,PID算法控制,數(shù)學(xué)模型 第 I 頁 Abstract Robot is a kind of programming and perform certain operations and mobile task mechanism in automatic con

4、trol. And robot arm as the main executive body, is a very complex multi input and multi output nonlinear system, it has a time-varying, strong coupling and nonlinear dynamic characteristics, due to the complexity of the control caused wide attention of practitioners. With the progress of the times,

5、like military manufacturing, industrial production, daily life and entertainment, education and other fields of a robot arm control technology application requirements gradually increase, from the design a large working space, the flexible movement of the multi degree of freedom robot arm is particu

6、larly important. Mechanical arm trajectory tracking control technology including: adaptive control, SMVSC, robust adaptive control, fuzzy adaptive etc.. In this paper, the use of fuzzy PID control design for two degree of freedom manipulator control algorithm, the control method with fuzzy cont

7、rol of a flexible and adaptable advantages, also has the classic PID control the characteristics of high precision. This paper focuses on the design of control algorithm of two degrees of freedom manipulator, a mathematical model of two-DOF Manipulator, namely two-DOF Manipulator driving force

8、and rotation angle between the output function. Then use the control to design a manipulator trajectory planning arithmetic of fuzzy PID method, according to the user's task requirements and for two degrees of freedom manipulator end effector trajectory. And study how to design a system for PID cont

9、roller is given, to achieve the output of the control system of the reference input tracking, and disturbance input response amplitude is smaller, and can decay to zero no steady state error. Finally, a case analysis based on MATLAB/SIMULINK software is presented to illustrate the effective of PID f

10、uzzy control algorithm. Key Words: Multi degree of freedom, manipulator, control, PID algorithm, mathematical mode 第 II 頁 目錄 摘要 .............................................................................................................................. I Abstract..........................

11、.............................................................................................. II 1 緒論 III 1.1 本文研究的目的與意義 1 1.2 機械臂控制算法研究現(xiàn)狀 1 1.3 本論文的工作總結(jié) 3 2 機械臂控制系統(tǒng)概述 4 2.1 二自由度機械臂的動力學(xué)控制模型 4 2.2 二自由度機械臂運動學(xué)正解 5 2.3 二自由度機械臂運動學(xué)中的反解 7 2.3.1 運動學(xué)反解的不唯一性 8 2.3.2 在運動學(xué)反解中出現(xiàn)的個別情形 9 3 控制算法設(shè)計

12、10 3.1 PID的概述 10 3.2 模糊PID控制 12 3.3 二自由度運動路徑規(guī)劃 13 3.3.1 直角坐標(biāo)空間中規(guī)劃算法 13 3.3.2 直線插補和圓弧插補算法 16 3.4 模糊PID控制算法設(shè)計 17 4 算例分析 20 4.1 二自由度機械臂PID模糊控制器的建模 20 4.1.1 模糊PID控制 20 4.1.2 PID模糊建模 21 4.1.3 PID模糊控制 22 4.2 設(shè)計模糊控制器規(guī)則以及其仿真分析 22 4.2.1 模糊控制器規(guī)則 22 4.2.2 PID參數(shù)的模糊整定 25 4.3 仿真結(jié)果分析 30 總

13、結(jié) 32 致謝 33 參考文獻 34 第I頁 1 緒論 1.1 本文研究的目的與意義 機器人是一種能夠進行編程并在自動控制下執(zhí)行某些操作和移動作業(yè)任務(wù)的機械裝置。機械臂作為機器人最主要的執(zhí)行機構(gòu),對它的研究越來越受到工程技術(shù)人員的關(guān)注。它涉及的學(xué)科有材料科學(xué)、控制技術(shù)、傳感器技術(shù)、計算機技術(shù)、微電子技術(shù)、通訊技術(shù)、人工智能、仿生學(xué)等等很多學(xué)科。 一個機械臂系統(tǒng)主要包括機械、硬件和軟件、算法這四個部分。到具體設(shè)計需要考慮結(jié)構(gòu)設(shè)計、控制系統(tǒng)設(shè)計、運動學(xué)分析、動力學(xué)分析、軌跡規(guī)劃研究、路徑規(guī)劃研究、運動學(xué)動力學(xué)仿真等部分。對于一套輕便型機械臂的研發(fā),需要把各個部分緊密聯(lián)

14、系,互相協(xié)調(diào)設(shè)計。隨著時代的進步,機器臂技術(shù)的應(yīng)用越來越普及,已逐漸滲透到軍事、航天、醫(yī)療、日常生活及教育娛樂等各個領(lǐng)域。目前實際應(yīng)用的絕大多數(shù)機器臂都是固定在基座上的,它們只能固定在某一位置上進行操作,因而其應(yīng)用范圍多限于工業(yè)生產(chǎn)中的重復(fù)性工作。于是實際生產(chǎn)生活中迫切需要一種活動空間大,能適用于各種復(fù)雜環(huán)境和任務(wù)的可移動機器人。由于移動機器人工作空間大、運動靈活等優(yōu)點,對它們的研究也是越來越多,但是這種機器人很多都是實現(xiàn)移動的,并沒有可控制的手臂,所以沒有抓取物體的功能。為了讓移動機器人能夠完成簡單的作業(yè),在它上面安裝兩只輕型服務(wù)型機械臂顯的尤其必要。 1.2 機械臂控制算法研究現(xiàn)狀 最

15、早的機械臂是1962年美國聯(lián)合公司制造的名為Unimate的機械臂,該系統(tǒng)的設(shè)計參照坦克塔臺,其應(yīng)用于將一些配件傳送到生產(chǎn)線,其控制系統(tǒng)是一個大型計算機[7]。在文獻[8]中,Liu Xinjun等人對二自由度并聯(lián)機器人的運動學(xué)和動力學(xué)進行建模分析,并對二自由度并聯(lián)機器人的綜合性能做了深刻探討,并提出新的研究方法。Kim J Y對二自由度五連桿機械臂進行運動學(xué)的研究分析[9]。在對機械臂實現(xiàn)控制時,控制器的設(shè)計過程采用無模型的控制思想,例如可以通過神經(jīng)網(wǎng)絡(luò)滑模變結(jié)構(gòu)控制(NN-SMVSC)等方法實現(xiàn),即能夠保障控制器的效率,同時,又能避免慣量矩陣或逆矩陣的計算[10]。 在文獻[11

16、]中,Su考慮了在執(zhí)行器約束的情況下,針對兩關(guān)節(jié)機械臂,研究了機械臂的全局輸出反饋整定問題,并結(jié)合PID控制與補償措施方法,通過Lyapunov方法證明了閉環(huán)系統(tǒng)的全局漸近穩(wěn)定性。 Liuzzo等[I2]提出了一種不依賴于模型的控制器,該控制器在對機械臂實現(xiàn)控制時,僅依賴于輸入的周期信號值及機械臂的動力學(xué)的常數(shù)界限。通過對每個關(guān)節(jié)的輸入信號進行傅立葉級數(shù)展開,判斷控制系統(tǒng)的全局穩(wěn)定性和局部穩(wěn)定性。當(dāng)給定的輸入信號的傅立葉級數(shù)展開有界時,可以獲得全局穩(wěn)定和局部指數(shù)穩(wěn)定的誤差動力學(xué),使跟蹤軌跡的誤差達到任意精度。同時,自適應(yīng)PID瓜控制器通過辨識輸入信號的傅立葉系數(shù)來學(xué)習(xí)輸入信號。 Purwa

17、r等[13]超出了Chebyshev自適應(yīng)神經(jīng)元控制器,該控制器的設(shè)計主要考慮了機械臂執(zhí)行器的約束,并估計系統(tǒng)負(fù)載變化、未知非線性LJ及帶干擾的輸入力矩等結(jié)構(gòu)化或非結(jié)構(gòu)化的不確定性。該方法設(shè)計的控制器避免了速度信號通過位置微分獲得而容易摻入噪聲的缺點,只依賴于關(guān)節(jié)位置信息,能夠?qū)崿F(xiàn)神經(jīng)網(wǎng)絡(luò)逼近與動態(tài)濾波器的融合。 文獻[14]主要針對系統(tǒng)在具有結(jié)構(gòu)不確定性和非結(jié)構(gòu)不確定性時,提出一種模糊自適應(yīng)控制方法,并對機械臂的軌跡跟蹤控制進行實驗。當(dāng)機械臂的關(guān)節(jié)速度不可測時,引入速度觀測器,設(shè)計了自適應(yīng)輸出反饋控制器。通過研究機械臂的動力學(xué)特性,并對不確定性項進行解稱,就能夠降低模糊控制器模糊規(guī)則的數(shù)目

18、,簡化控制器。當(dāng)機械臂的關(guān)節(jié)速度可測時,通過設(shè)計全狀態(tài)模糊自適應(yīng)反饋控制器,可保證系統(tǒng)閉環(huán)動力學(xué)穩(wěn)定。 國內(nèi)的許多單位自從上世紀(jì)80年代開始,也開始重點研究機械臂的控制系統(tǒng)。例如,清華大學(xué)、浙江大學(xué)、沈陽自動化研究所及上海交通大學(xué)等學(xué)?;蜓芯克趪腋咝录夹g(shù)計劃自動化領(lǐng)域智能機器人專題中做了很好的帶頭作用,且收獲頗多[15-16],促進了國內(nèi)對機械臂的研究。 在文獻[17]中,王啟明和汪勁松對二自由度的并聯(lián)機器人操作臂進行了運動學(xué)和動力學(xué)建模,并進行仿真。在文獻[18]中,北京工業(yè)大學(xué)的劉善增對平面二自由度并聯(lián)機器人進行了動力學(xué)設(shè)計研究,但是并沒有對并聯(lián)機器人作控制研究。陳國棟等[

19、19],在對機器人的研究中,采用經(jīng)過濾波器作用的位置誤差信號作為反饋信號,并用"參考速度"來替代非線性部分輸出端的實際速度信號,仿真結(jié)果中取得了滿意的跟蹤效果,該文獻的缺點是該方法必須基于精確的動力學(xué)模型。目前國內(nèi)已提出很多抑制抖振的方法[20],例如,滑??刂仆ǔEc模糊控制、神經(jīng)網(wǎng)絡(luò)控制等方法相結(jié)合,來消除機械臂控制輸入的抖振現(xiàn)象。新的滑模面及控制方式也被不斷提出并應(yīng)用到機械臂軌跡跟蹤控制領(lǐng)域。 1.3 本文主要工作內(nèi)容 本論文第二章主要就是構(gòu)建二自由度機械臂動力學(xué)控制模型,首先詳細(xì)分析二階機械臂運動學(xué)解,定義各個目標(biāo)變量,然后尋找輸入機械臂驅(qū)動力矩矢量和輸出機械臂轉(zhuǎn)動矢量的數(shù)學(xué)

20、約束關(guān)系。第三章主要就是介紹二自由度機械臂控制算法設(shè)計,詳細(xì)介紹了控制和模糊控制的基本理論,比較二者優(yōu)缺點,以及各自適宜的情況和約束條件。第四章主要就是敘述基于MATLAB/SIMULINK軟件的案例分析,在Simulink仿真環(huán)境下搭建完整控制系統(tǒng)得到給定軌跡曲線、跟蹤軌跡曲線、以及誤差軌跡曲線。對仿真結(jié)果和誤差來源進行分析,得出結(jié)論,并闡釋模糊控制方法的有效性和可行性。 第 36 頁 2 機械臂控制系統(tǒng)概述 因為機械臂隨著自由度個數(shù)的增大,控制系統(tǒng)的復(fù)雜程度加大,但是其基本原理類似,所以本文主要以二自由度機械臂為例闡釋多自由度的基本原理, 2.1 二

21、自由度機械臂的動力學(xué)控制模型 機械臂的運動方式在運動空間上來分一般而言有兩大類,即關(guān)節(jié)型和直角型。各個關(guān)節(jié)的的運動直接取決于它的運動坐標(biāo),把全部的關(guān)節(jié)變量設(shè)為一個關(guān)節(jié)矢量,全部的關(guān)節(jié)矢量組成的集合則為它的關(guān)節(jié)空間。通過控制所有關(guān)節(jié)的移動來控制機器人的移動便為關(guān)節(jié)空間運動模式。機械臂終端對象的具體地點和角度一般在直角坐標(biāo)空間中表現(xiàn)出來,這種模式就是稱為直角坐標(biāo)運動模式,在這種運動模式中,機械臂用戶規(guī)定的任務(wù)是由機械臂末端對象在直角坐標(biāo)空間中的移動來實現(xiàn)的。 就操作者而言,直角坐標(biāo)空間更為人們接受,故而在直角坐標(biāo)空間中進行對機械臂的操作。因此我們就要在關(guān)節(jié)坐標(biāo)和直角坐標(biāo)之間建立

22、一一對應(yīng)的數(shù)學(xué)約束關(guān)系。換言之,如知道機械臂每一個關(guān)節(jié)的坐標(biāo)常數(shù),就需要求解它的終端在直角坐標(biāo)空間中的具體位置坐標(biāo),這個被叫做為運動學(xué)正解;反之,如知道它末端在直角坐標(biāo)空間的坐標(biāo)就需要求解各個運動關(guān)節(jié)的坐標(biāo)參數(shù),這個則被稱為運動學(xué)反向解。 設(shè)為機械臂在關(guān)節(jié)坐標(biāo)空間中的變量, 為它的終端對象在直角坐標(biāo)空間中的具體位置坐標(biāo),那么它們兩個之間的關(guān)系為: (2.1) 上式是一個隱式方程,若能夠從中求解出:

23、 (2.2) 那么直角坐標(biāo)變量由關(guān)節(jié)坐標(biāo)變量來定量表達,就能夠得到機械臂的運動學(xué)正解。通常而言,可以從式(2.1)得到它的的惟一正解,得到的正解為: (2.3) 然而一般情況下,我們不容易獲得它的運動學(xué)反解,是因為它的反解通常就是多解,所以在現(xiàn)實情況下,通常運用幾何機械臂的運動學(xué)解。 2.2 二自由度機械臂運動學(xué)正解 已知:關(guān)節(jié)1連桿長度,關(guān)節(jié)的值為(如下圖所示);關(guān)節(jié)2連桿長度,關(guān)節(jié)的值為(角度如下圖所示) 求解:記下圖中

24、關(guān)節(jié)連桿末端對象固定點的直角空間坐標(biāo): 圖2.1 機械臂運動學(xué)的正解 機械臂操作端的位置方程為: (2.4) (2.5) 上述方程的Jacobian矩陣為 機械臂的動力學(xué)方程為 (2.6) 其中,為總的驅(qū)動力矩矢量,為轉(zhuǎn)動角度矢量;為轉(zhuǎn)動慣量矩陣,為Coriolis離心轉(zhuǎn)矩,為重力矢量。、、的數(shù)學(xué)表達式如下: (2.7) (2.8) (2.9) 其中 定義狀態(tài)變

25、量 (2.10) 設(shè) (2.11) 則機械臂模型的狀態(tài)方程可以寫成 (2.12) 系統(tǒng)輸出方程為 (2.13) 2.3 二自由度機械臂運動學(xué)中的反解 已知:記關(guān)節(jié)1連桿長度為,關(guān)節(jié)2連桿長度為,關(guān)節(jié)連桿末端的點在平面坐標(biāo)空間的坐標(biāo)為: 求解:記關(guān)節(jié)值為(角度如下圖所示),關(guān)節(jié)值為(角度如下圖所示)。 圖2.2 機械臂運動學(xué)的反解 如上圖所示,在不考慮奇異點的情況下,得到如下公式: (2.14)

26、 (2.15) (2.16) (2.17) (2.18) (2.19) (2

27、.20) (2.21) 求解可知運動學(xué)的反解計算公式: (2.22) 是用來計算的反正切值(單位為弧度)的數(shù)學(xué)函數(shù)。從得知的運動學(xué)反解上來看,可以獲得是非線性系統(tǒng)。 2.3.1 運動學(xué)反解的不唯一性 圖2.3 機械臂的兩個反解 它的運動學(xué)反解一般多解,會存在有好幾組關(guān)節(jié)變量終端在用戶要求的位置點。圖2-3很好的反應(yīng)二自由度機械臂會在工作空間中運動時有兩組運動學(xué)反解這一情況。 綜上所述,在實際操作中

28、從反解中的多解問題找到一組最優(yōu)解是一個重要問題。通常情形下可以用優(yōu)化算法來處理這種多組反解問題。當(dāng)設(shè)置此算法的優(yōu)化準(zhǔn)則時,可以選取的優(yōu)化準(zhǔn)則有兩種情況: ①當(dāng)沒有障礙物的時候,就用“最短”原理。由于機械臂的動作是持續(xù)存在的而非間斷的,可以根據(jù)之前機械臂運動反解獲得的關(guān)節(jié)坐標(biāo)值,能夠得到機械臂關(guān)節(jié)運動最短的解確定為反解,所以使之保持連續(xù)。 ②當(dāng)有障礙物的時候,沿“最短”軌跡原則會發(fā)生碰撞,那么就綜合選用機械臂的有障礙路徑軌跡,算法等方法來得到反解。 2.3.2 在運動學(xué)反解中出現(xiàn)的個別情形 當(dāng)目標(biāo)點位置在機械臂運動空間范圍之外,就用下面的公式判斷:

29、 (2.7) 如果滿足: (2.8) 就能夠判斷特定地點在機械臂的運動空間范疇之外,換句話就是說運動學(xué)反解無解,式(2.8)為一無窮小正分?jǐn)?shù),譬如選取 (2.9) 有一個特殊情況就是目標(biāo)位置正好落在機械臂工作空間邊界上,在這種情況下(奇異位置),機械臂的移動情況就變得差了,控制的軸移動也許

30、會發(fā)生跳變的情況。這種情況下奇異情況的判別條件為: (2.10) 圖2.4 反解中的特殊情況 根據(jù)以上可得到在特殊情況的反解為: (2.11) 3. 控制算法設(shè)計 3.1 PID的概述 從還有提出參數(shù)整定概念起,把控制器的自動和手動整定的思想理念用在諸多科學(xué)技術(shù)之上。并且控制為目前最常用的方法,被用于很多反饋控制亦或是其不大的變形控制。調(diào)節(jié)器跟它的優(yōu)化型在工業(yè)的控制中最普遍

31、。迄今為止,百分之八十四的依舊是單純的 調(diào)節(jié)器,然而優(yōu)化型就包括在其中的就在百分之九十以上。 控制器作為使用最廣泛的控制器,為微分、比例、積分并聯(lián)控制器??刂破鞯臄?shù)學(xué)模型可以用下式表示: (3.1) 其中:一控制器的輸出 一控制器輸入,即誤差信號。 一控制器的比例系數(shù)。 一控制器的積分時間。 一控制器的微分時間。 在控制器中,其數(shù)學(xué)模型由微分(D)、比例(P)、積分(I)三部分組成。這三部分分別是: ①比例部分?jǐn)?shù)學(xué)

32、式表示如下: (3.2) 控制器的功能隨著偏差的出現(xiàn)而出現(xiàn),并且讓其偏差朝向減小的方向變動??刂乒δ艿某潭扔杀壤禂?shù)決定。隨著比例系數(shù)增大,那么過渡過程就會減短,伴隨著控制結(jié)果的穩(wěn)態(tài)誤差也減?。蝗欢?,其超調(diào)量愈大,產(chǎn)生振蕩的可能性加大,致使動態(tài)性能變壞的劣勢,更有甚者會令其閉環(huán)系統(tǒng)不穩(wěn)定。為了達到過渡時間少和穩(wěn)態(tài)誤差小的良好實驗結(jié)果,比例系數(shù)的擇取是一定要非常合適。 ②積分部分?jǐn)?shù)學(xué)表達式表示如下式所示:

33、 (3.3) 根據(jù)式(3.3)可知,只要存在誤差,控制功能一直積累,輸出控制量是很難去消除誤差當(dāng)存在誤差的時候??芍e分部分的功能是可以消除系統(tǒng)的誤差。但因為它具有滯后性,會使得積分控制功能很強將使系統(tǒng)超調(diào)不能夠往變小的方向變化,其動態(tài)機能變?nèi)?,甚至?xí)斐砷]環(huán)系統(tǒng)不穩(wěn)定的情況。對積分部分有著極大的控制能力,愈大積分功能愈弱。這種情況下對于變小系統(tǒng)超調(diào)有著極大的優(yōu)勢,過渡過程很難產(chǎn)生振蕩。卻會使得消除誤差所需時間增長。當(dāng)愈小積分功能愈強。這種情況下系統(tǒng)過渡過程中會產(chǎn)生振蕩,使得消除誤差所需的時間減少。 ③微分部分?jǐn)?shù)學(xué)表達式表示如下:

34、 (3.4) 微分部分能夠有效掌控誤差的變動趨向,加大其控制功能能使系統(tǒng)更快地反應(yīng),震蕩不變大,系統(tǒng)的穩(wěn)定性增強,其劣勢就是降低了系統(tǒng)抵制外界擾動的功能。微分時間長短決定微分部分的功能強弱。愈大它抑制變化的能力愈強;否則,愈小它反抗變化的能力愈弱。在數(shù)字控制的計算機系統(tǒng)中,計算機控制算法程序可以達到計算機數(shù)字控制器的掌控。通常而言,這種控制系統(tǒng)就是一種采樣數(shù)據(jù)系統(tǒng)。并且在處理數(shù)字信號的問題中,均需要用數(shù)值計算來無限逼近。

35、因此,控制規(guī)律的實現(xiàn),一定要數(shù)值逼近的方法。若只有很短的采樣周期,則利用積分被求和取代,差商取代微分,讓 算法使其離散化。表述連續(xù)時間算法的微分方程,替換成表述離散時間 算法的差分方程式,便是數(shù)字位置型算式,即式(3.5): (3.5) 式中: 一 采樣周期時的輸出 一 采樣周期時的誤差 一采樣周期 其中 (3.6) 即為

36、 (3.7) 其中為比例系數(shù),為積分系數(shù),為微分系數(shù) 3.2 模糊PID控制 在常規(guī)的二維模糊控制器中,其輸入變量是偏差和輸入變量的變化量。所以通常而言,就把這種控制器認(rèn)為擁有比例和微分兩種控制功能,但是缺乏積分控制功能。然而,線性控制理論的積分控制功能是抵消穩(wěn)定偏差,可是動態(tài)運行反應(yīng)緩慢;比例控制功能動態(tài)響應(yīng)快速;然而高的穩(wěn)態(tài)精度以及快速的動態(tài)響應(yīng)可由比例積分控制功能來獲取。所以模糊控制器中增添了()控制策略,從而組成(或)復(fù)合型控制,除了讓動靜態(tài)性均能有可觀的提高外,也有有動態(tài)響應(yīng)的速度快、超調(diào)小、穩(wěn)擾動偏差小的優(yōu)點。 確定參數(shù)是控制的重點部分,這種方法就是通過模糊控制來確定參

37、數(shù),即利用誤差變化率和系統(tǒng)誤差。在線修改參數(shù)并且運用模糊控制規(guī)則。實現(xiàn)思想就是找到各個參數(shù)與誤差變化率和誤差之間的聯(lián)系,從實驗之中一直檢測誤差變化率和誤差。進行在線修改各個物理參數(shù),從而可以符合在不同和時滿足對控制參數(shù)的不同用戶要求。因此可以讓控制對象有良好的動性能、靜態(tài)性能、計算量小,易于用單片機實現(xiàn)的多種優(yōu)勢等。其原理框圖如圖3.1所示: 模糊化 模糊推理 de/dt 常規(guī)PID調(diào)節(jié)器 控制對象 圖3.1 模糊控制算法流程圖 3.3 二自由度運動路徑規(guī)劃 在得到機械臂的運動學(xué)解的情況下,當(dāng)它向目標(biāo)軌跡運動時,需要設(shè)計

38、一下它的運動路徑。這里有直角坐標(biāo)空間中的和關(guān)節(jié)空間中的路徑規(guī)劃這兩種路徑規(guī)劃算法。 3.3.1 直角坐標(biāo)空間中規(guī)劃算法 關(guān)節(jié)值是終極控制著機械臂終端的移動,要是可以設(shè)計關(guān)節(jié)空間中的軌跡,那么就能有效阻止發(fā)生雅可比矩陣的奇異所造成的速度不受控制的情況,還可以大大減少計算的時間。然而多數(shù)情況下,關(guān)節(jié)坐標(biāo)空間跟直角坐標(biāo)空間這兩者非 線性關(guān)系。因此能在關(guān)節(jié)空間中進行直接規(guī)劃的就只能夠是對路徑?jīng)]有要求的作業(yè),,像是連續(xù)弧焊的對運動路徑要求較高的作業(yè),就一定只能在直角坐標(biāo)空間中設(shè)計。之后便是將設(shè)計獲得的直角坐標(biāo)空間中的軌跡序列,利用所對應(yīng)反解算法換算解得,如下圖所示。

39、 圖3.2 路徑規(guī)劃控制流程圖 有必要的話在用運動學(xué)求反解得到的關(guān)節(jié)變量空間序列來進行關(guān)節(jié)坐標(biāo)空間中的路徑插補。通常而言,運動控制器在執(zhí)行運動軸伺服控制時,會進而對關(guān)節(jié)指定變量作插補,插補速率曲線采用的方式有兩種,分別是梯形圖形方式、S形圖形方式。 記在直角坐標(biāo)空間中,二自由度機械臂終端對象路徑空間曲線方程為: (3.8) 上式中,記x,y,z分別表示機械臂在三維直角坐標(biāo)空間中的位置

40、坐標(biāo)值,記t為時間。為方便實際當(dāng)中的控制,通常會選擇弧長參數(shù)表示的曲線表達式,則知道起點的初始值為的曲線函數(shù)為: (3.9) 上式中S表示為弧長參數(shù),由積分公式: (3.10) 得到,然后代入式(2.12)就可以得到式(2.13)所示曲線函數(shù)。 記為運動軌跡的更新時間,即每隔時間就會有一個插值點生成, 為軌跡期望的運動時間,那么所得軌跡插補序列的長度為:

41、 (3.11) 當(dāng)弧長給出的速率移動曲線段,每個插補弧長的增量已知,就能夠獲得軌跡插補序列表達式: (3.12) 若在梯形速度曲線模式下(路徑段是由減速、等速和加速構(gòu)成),則使得加速度和減速度大小相等,加速和減速時間相同,如圖2-6所示,取為加速和減速的時間。便能夠得到的路徑長度表達式為: (3.13) 圖3.3 梯形模式的路徑規(guī)劃 時間點不同時,遵循式子(3.13)路徑的不同分段

42、,將結(jié)果代入式(3.9),就能解出軌跡插補位置后序列的坐標(biāo)值。 在解出軌跡插補位置序列的坐標(biāo)值后,會由于軌跡更新周期短暫的原因在實際操作可能使用相鄰位置序列點的差分近似來進行軌跡插補速度。 3.3.2 直線插補和圓弧插補算法 在平面直角坐標(biāo)系之中,二自由度機械臂只有的兩維參數(shù)值。直線插補和圓弧插補這兩種方法技巧在運動控制系統(tǒng)中采用最廣泛,一些繁雜曲面可以由直線段和圓弧段近似逼近。本文會給出直線插補和圓弧插補技術(shù)在二自由度機械臂平面直角坐標(biāo)內(nèi)的一個簡單運用。 ①直線插補算法 在平面二維直角坐標(biāo)中,為軌跡校正時間周期, 為軌跡理想的的運動時間,為起始點, 為指定點

43、。 在等速度規(guī)則之下,每一次插補弧長的進給量為,直線插補序列的長度為,對于直線規(guī)劃,等弧長進給等效于等的進給,每一次插補方向的變化量: (3.10) 直線位置插補序列為: (3.11) ②圓弧插補算法 如圖2-7所示,需要在平面X-Y內(nèi)作出一個從到、圓心角為的圓弧、r為半徑、以為圓心。求圓弧插補位置序列

44、。 圖3.4 圓弧插補算法 記為起點,它所對應(yīng)的圓心角為,當(dāng)插值序列長度為n,每個插值圓心角的增加值為,則圓弧插值序列的方程式為: (3.12) 3.4 模糊PID控制算法設(shè)計 控制器發(fā)展到現(xiàn)在已有五六十年的時間,由于很好理解,不需要詳細(xì)的系統(tǒng)模型等條件,并且仍然是使用最廣泛。 使用積分(I),微分(D)和比例(P)通過線性結(jié)合來組成控制量對被控對象進行操控的方法,就稱之為控制。當(dāng)計算機開始用在控制部分時,擁有用系統(tǒng)軟件的方法達到完成控制算法,和計算機的邏輯計算作用,從而讓控制算法

45、越發(fā)靈活適于用戶需要,便是數(shù)字控制。假定值r(t)與輸出反饋值C(t)的誤差按積分(I)、比例(P)、微分(D)運算后,經(jīng)過線性組合組成控制量,對控制對象進行操控。如圖3.2所示: 圖3.5 PID控制原理 記給定值與現(xiàn)實中輸出值組成控制誤差公式為: (3.13) 的控制規(guī)律為: (3.14) 寫成傳遞函數(shù)的形式: (3.

46、15) 控制器的校正情況的功能如下: ①比例環(huán)節(jié):按照比例地反映控制系統(tǒng)的誤差信號,控制器的控制功能隨誤差的出現(xiàn)而出現(xiàn),從而能夠減小誤差。 ②積分環(huán)節(jié):用于抵消靜差帶來的影響,從而能夠使得系統(tǒng)的準(zhǔn)確度上升。積分時間常數(shù)的長短被積分功能的性能好壞決定,越大積分功能越弱,倒過來就越強。 ③微分環(huán)節(jié):用來表示誤差信號的變動,還會在誤差信號變化很大時,在系統(tǒng)中添加有用的提前修正信號,用來使系統(tǒng)的響應(yīng)速率大大變得快速,那么會使調(diào)節(jié)時間大大減少。 下面用典型二階系統(tǒng)單位階躍響應(yīng)的誤差曲線進行分析如下: 圖3.6 二階單位階躍響應(yīng) 從誤差曲線

47、看出: ①當(dāng)誤差的值較大時,即誤差的絕對值較大,不管誤差的變化方向是怎樣,應(yīng)該讓取值較大,從而來增加響應(yīng)速度;但是為了防止由于瞬時過大,的取值會比較小;為了方便控制超調(diào),使取值很小。 ②當(dāng)誤差的值為一般時,需要確保系統(tǒng)的響應(yīng)速率以及超調(diào)的操控, 的值不增大,并且值應(yīng)不減少,恰好的值是有必要的。 ③誤差不大時,為了確保系統(tǒng)的穩(wěn)定性好,可以變大, 的取值,并且的取值應(yīng)和聯(lián)系起來阻止發(fā)生振蕩現(xiàn)象,。 控制器的優(yōu)點有:非常簡單并且容易理解、沒有精確的系統(tǒng)模型約束。然而它在控制非線性,時變,藕合及參數(shù)和結(jié)構(gòu)不知道的情況下,控制效果不好。若是控制器功能過于繁雜的話,也許會出現(xiàn)不管怎樣調(diào)整參數(shù)都不能

48、夠做到我們想要的控制程度。另外,為了得到的值時,若是沒有其他一些對應(yīng)的輔助技術(shù),通常是運用試湊法來做,那么我們必須進行大量的實驗,直到拼湊出最優(yōu)參數(shù),這樣不僅造成浪費而且耗費精力和時間。 4 算例分析 4.1 二自由度機械臂PID模糊控制器的建模 4.1.1 模糊PID控制 模糊控制就是算法跟模糊控制理論二者相聯(lián)合的新型控制理論。模擬控制系統(tǒng)控制方程式如下式(4.1)所示,讓計算機進行控制,一定要將模擬數(shù)字化即控制離散化。因為計算機只能夠依照離散采樣每個時刻的誤差值知道控制量,卻不會跟模擬控制器 會一直不斷的輸出一些控制量,所以式(3.4)中的微分(D)和積分(I)項

49、便只可以以間接的方法計算準(zhǔn),唯有通過用取微元計算的數(shù)學(xué)方法來無限靠近。 (4.1) 如果為采樣周期,用和式來替換積分,用增量替換微分,用離散采樣時刻點描述連續(xù)時間,就能夠得到以下近似變換: (4.2) 由上可知,得到(4.3): (4.3) 式中為第個采樣時刻的輸出值;為第個采樣時刻的系統(tǒng)的一個輸出偏差,即控制器的一個輸入值;為第個采樣時刻的

50、系統(tǒng)輸出誤差;為開始進行控制時的原始值。 復(fù)頻域中,傳遞函數(shù)為: (4.4) 替換成絕對式數(shù)字控制器為: (4.5) 其中有系統(tǒng)采用步進電機等增長型操作機構(gòu),該系統(tǒng)就只要的是控制量的增大量,而非位置的正值。故此對上式進行改寫和替換,因此有以下增量等量關(guān)式: (4.6) 增長式的計算方法,僅僅只要計算到現(xiàn)時之前三個時刻的誤差即行,這會使大大削減控制算法計算過程中的工作量,最重要是這樣的方式可以在一定限度內(nèi)阻止

51、控制器造成積分飽和的現(xiàn)象。 4.1.2 PID模糊建模 模糊控制的系統(tǒng)結(jié)構(gòu)圖如下4.1所示。 圖4.1 模糊控制系統(tǒng)結(jié)構(gòu)圖 在通常規(guī)模的基礎(chǔ)上,y就是給定值的偏差變化率和偏差跟被控對象的反饋值,利用模糊推理,在線自整定值的大小。進而滿足不同e和ec。若其參數(shù)有不一樣用戶規(guī)定的話,會讓被控制對象擁有很好的靜態(tài)(statics)性能和動態(tài)(dynamic)性能。 模糊控制的基本論域,即、、的實際變動界限。對于模糊控制理論,輸入變量跟輸出變量被用模糊概念來理解,和即變量輸入,即變量輸出。模糊集合就是語言變量,它的值即為語言變量的值。用戶的疑難就是唯一證實確保語言變量值,它就是

52、模糊子集。語言變量的詞集由語言變量值來形成,然而,、在基本論域內(nèi)的一個現(xiàn)實值,被施加了模糊控制。我們需要把輸入,轉(zhuǎn)變成語言變量值。并且,該轉(zhuǎn)變過程就叫做模糊化,還要取決于該語言變量一個從屬度函數(shù)。 4.1.3 PID模糊控制 由4.1圖,來建模模糊PID控制器。因為系統(tǒng)受控時,對照不一樣的,,將參數(shù)整定的規(guī)則一起總結(jié)歸納: ①當(dāng)愈大時,表示其誤差的絕對值愈大,那么取較大值,來增加響應(yīng)的迅速性;防止瞬時值太大,取較小的值;對積分給予一定的約束范圍,一般取來避免出現(xiàn)較大的超調(diào)。 ②當(dāng)一般數(shù)值時,由于取不大些從而使系統(tǒng)相應(yīng)超調(diào)不大;那么在這樣情形下,對造成系統(tǒng)輸出結(jié)果擾動較大,所以

53、取值很關(guān)鍵,要得當(dāng),因而的也要得當(dāng)。 ③當(dāng)較小時,、取一般大值使系統(tǒng)具有合適的不變性,與此同時,考慮抗干擾性能,適當(dāng)?shù)剡x取值避免系統(tǒng)在固定點附近泛起不穩(wěn)定的情況。的取值與取值規(guī)律是反向變化的,一般而言為中等大小。 4.2 設(shè)計模糊控制器規(guī)則以及其仿真分析 4.2.1 模糊控制器規(guī)則 模糊控制器設(shè)計的重點在于它的算法,通常來說有三個組成部門,即界說各個模糊子集,創(chuàng)設(shè)模糊控制器的控制規(guī)則及擇取描寫輸入變量、輸出變量的詞集。描寫輸入變量、輸出變量能夠由較多的語句來表達,那么能夠簡易擬定控制規(guī)則,相反的是控制規(guī)則相應(yīng)也繁雜和麻煩;要是擇取表達的語句不多,就會讓描寫變量單一,致使控制器

54、的工能變?nèi)酢Mǔ6允菐讉€個詞語,但也能夠按照現(xiàn)實情形下的要求來擇取三四個措辭變量。 要盡可能減小穩(wěn)態(tài)誤差被控對象,使其穩(wěn)定是提高模糊控制輸出的目的有效方法。因此,采取負(fù)偏向大值,負(fù)偏向中值,負(fù)偏向小值,不變,正偏向小值,正篇向中值,正偏向大值來對應(yīng)于控制器輸入之一的擾動:用英文字頭縮寫為:{GN,MN,SN,CON,SP,MP,GP}然后便是構(gòu)造模糊子集,本質(zhì)上等于是要模糊子集在函數(shù)曲線。構(gòu)成了一個相應(yīng)的模糊變量的模糊子集。 從概念上來說,在浩繁從屬函數(shù)圖中,來描寫人舉行控制活動時的模糊理論最合適的是正態(tài)型模糊變量。然而工程的現(xiàn)實運作中,機械正態(tài)型散布的模糊變量的運算是極其遲鈍和非常繁雜

55、的,而三角型散布的模糊變量的運算過程簡易、反應(yīng)敏捷。所以控制系統(tǒng)中很多的控制器大都選擇三角型分布,最后就是創(chuàng)建模糊控制器的控制規(guī)則。 選擇輸入語言變量為誤差變化率和誤差,模糊變量值取{GN,MN,SN,CON,SP,MP,GP}這幾個模糊值,對應(yīng)著{負(fù)偏向大值,負(fù)偏向中值,負(fù)偏向小值,不變,正偏向小值,正篇向中值,正偏向大值};選擇輸出語言變量為,,模糊變量值取{GN,MN,SN,CON,SP,MP,GP}這幾個模糊值,建立,的模糊規(guī)則表如下表4-1、表4-2、表4-3。 表4-1的模糊規(guī)則表 GN MN SN CON SP MP GP GN GP GP

56、MP MP SP CON CON MN GP GP MP SP SP CON SN SN MP MP MP SP CON SN SN CON MP MP SP CON SN MN MN SP SP SP CON SN SN MN MN MP SP CON SN MN MN MN GN GP CON CON MN MN MN GN GN 表4-2的模糊規(guī)則表 GN MN SN CON SP MP GP GN GN GN MN

57、 MN SN CON CON MN GN GN MN SN SN CON CON SN GN MN SN SN CON SP SP CON MN MN SN CON SP MP MP SP MN SN CON SP SP MP GP MP CON CON SP SP MP GP GP GP CON CON SP MP MP GP GP 表4-3 的模糊規(guī)則表 GN MN SN CON SP MP GP GN SP SN GN

58、 GN GN MN SP MN SP SN GN MN MN SN CON SN CON SN MN MN SN SN CON CON CON SN SN SN SN SN CON SP CON CON CON CON CON CON CON MP GP SN SP SP SP SP GP GP GP MP MP MP SP SP GP 定義e和ec的論域:為各模糊子集的隸 屬度的值,按照各參數(shù)模糊控制模型和各模糊子集的從屬度對應(yīng)表,應(yīng)用模糊規(guī)則設(shè)定參數(shù)取值表,代入式(4.7)

59、 (4.7) 其中是之前默認(rèn)好的初始PID參數(shù),為模糊控制器的這些輸出值,控制系統(tǒng)在對模糊邏輯規(guī)則的對表和計算、結(jié)果的處理,從而達到對參數(shù)的在線更正。其工作流程如圖4-2所示。 圖4.2 模糊在線校正參數(shù)流程 4.2.2 PID參數(shù)的模糊整定 按照上文中對二自由度運動學(xué)解的分析和數(shù)學(xué)建模,已經(jīng)清晰的知道機械臂從直角坐標(biāo)到極坐標(biāo)的對應(yīng)關(guān)系,就能夠架構(gòu)一個基本的二自由度機械手臂的模糊控制算法模型。 (4.8) 在Simulin

60、k仿真環(huán)境下搭建完整控制系統(tǒng),如下4.3所示: 圖4.3 Simulink仿真圖 選擇期望輸入信號為 (4.9) 輸入信號給定的理想輸出軌跡線設(shè)定為長半軸為0.7,短半軸為0.3,焦點在軸上的橢圓形軌跡。利用上面搭建的Simulink仿真圖運行程序,可得到給定軌跡曲線、跟蹤軌跡曲線、誤差軌跡曲線。 二自由度機械臂是雙輸入雙輸出系統(tǒng),一定要成立兩組模糊控制函數(shù),來各自調(diào)節(jié)Ll,L2臂的參數(shù)。在MATLAB軟件中編寫相應(yīng)的程序按表4-1、表4-2、表4-3

61、建立PID模糊自整定變量調(diào)整系統(tǒng)。 每次采選取樣的間隔為,選取模糊PID控制螺旋曲線追蹤。進行如下操作: (1)在第和第對跟蹤的軌跡增添正誤差。 (2)在第和第對模糊控制器增添負(fù)干擾。 (3)在第和第對系統(tǒng)輸出增添負(fù)干擾。 控制結(jié)果如圖: 圖4.4控制器的輸出u 圖4.5 的調(diào)整 圖4.6 Ki的調(diào)整 圖4.7 Kd的調(diào)整 圖4.8 軌跡跟蹤曲線 圖1.9 跟蹤誤差曲線 4.3 仿真結(jié)果分析 通過以上圖形的對比,我們觀察到:

62、 (1)對于控制系統(tǒng)的輸出而言,就只是單純會被輸出干擾所影響; (2)這三個外界的誤差干擾對控制器的輸出均有干擾,并且輸出有累加效應(yīng); (3)均對第二個擾動無影響,軌跡跟蹤算法與控制器的輸出的擾動沒有很大關(guān)系。 (4)第二個和第三個擾動即使其中一個是正干擾,另外一個是負(fù)干擾,但是的對這兩個干擾的反映均是正的,而的反映均是負(fù)的。 (5)圖4.8中青色粗線為期望軌跡,紅色帶方塊虛線為機械臂實際運動軌跡;圖4.9中紅色實線為方向跟蹤誤差,藍(lán)色點劃線為方向跟蹤誤差。由圖4.8、圖4.9的軌跡跟蹤曲線和跟蹤誤差曲線可以看出,實際輸出很接近理想輸出,而且在響應(yīng)速度上也很快。跟蹤

63、誤差曲線的幅值很?。ㄆ椒€(wěn)運行階段),能夠滿足性能指標(biāo)要求。 按照以上的仿真結(jié)果可知,模糊控制不僅能夠把控制系統(tǒng)中的各種擾動處理好,而且還能讓控制系統(tǒng)以一種更加穩(wěn)定的狀態(tài)來運行下去。因此,應(yīng)用模糊PID控制方法可以達到很好的控制效果。 總結(jié) 實際生活生產(chǎn)中,所面臨的系統(tǒng)極少會是純粹的線性系統(tǒng),可以肯定地說,任何投入實際生產(chǎn)運行的系統(tǒng)都會或多或少地具有非線性因素。所謂的線性系統(tǒng)只是為了研究對象的控制問題所作的合理簡化。因此,對非線性系統(tǒng)理論的了解和學(xué)習(xí),有助于培養(yǎng)正確的認(rèn)識觀,同時掌握一些實際有效的處理非線性問題的方法。 通過對機械臂控制系統(tǒng)的全面研究與學(xué)習(xí),討論了經(jīng)典PID控

64、制的與模糊PID控制理論的差異,特別是對機械臂的控制情況,理論與原理進行了多方面的研究,得出了它在空間運動的軌跡表達式是一個非線性的函數(shù),就只能用模糊控制理論的對其建模,研究以及控制,在MATLAB仿真軟件的環(huán)境下,用PID模糊控制來研究此次非線性的多自由度的機械臂,更加深刻的區(qū)別了兩種理論下的使用情況,一切從實際出發(fā),理論聯(lián)系實際,并將仿真與實踐相結(jié)合,使得對控制的學(xué)習(xí)有一個更高的認(rèn)識! 致謝 衷心感謝趙熙臨老師的耐心指導(dǎo),還有趙老師實驗室所有的師哥師姐們的耐心答疑,給了我很大的幫助。感謝我身邊的朋友和同學(xué)尤其是要感謝這么多年支持我的室友何晶晶,姚

65、亮同學(xué),不論在生活還是學(xué)習(xí)中都給了我非常大的鼓勵和支持,向他們表達誠摯的謝意。其實我最應(yīng)該感謝的是我的爸爸媽媽,從小到大他們就一直對我抱有殷切希望,一直在我身后給予我不僅僅是物質(zhì)上更是精神上的支持,讓我勇敢走到現(xiàn)在。 參考文獻 [1] L.A.Zadeh. Fuzzy Sets[J].Information and Control, 1965, 8。 [2]竇振中,模糊邏輯控制技術(shù)及其應(yīng)用。北京航空航天大學(xué)出版社,2001. 10。 [3]叢爽、李澤湘,實用運動控制技術(shù)。電子工業(yè)出版社,2006.10。 [4][美]Saeed B. Niku編著,孫富春、朱紀(jì)洪、劉國

66、棟等譯。機器人學(xué)導(dǎo)論,電子工業(yè)出版社,2004年1月。 [5]劉金餛,先進PID控制MATLAB仿真。電子工業(yè)出版社,2005年8月。 [6]連瑞敬、林百福,機械手臂運動控制的自組織模糊控制器。夏北科技大學(xué)學(xué)報,第三十八之一期。 [7]謝存禧 機器人技術(shù)及其應(yīng)用〔M],北京:機械工業(yè)出版社,2012, 29-55. [8]Liu X J, Wang Q M. Kinematics, dynamics and dimensional synthesis of a novel 2-dof translational manipulator[幾Journal of Intelligent and Robotic Systems, 2004, 41:205-224. [9] Kim J I'. Task based kinematic design of a two-dof manipulator with a parallelogram five-bar link mechanism [J], Mechatronics, 2006, 16:323-329. [10]Sadati

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!