2019屆高考數(shù)學總復習 第九單元 解析幾何 第62講 直線與圓錐曲線的位置關系檢測.doc
《2019屆高考數(shù)學總復習 第九單元 解析幾何 第62講 直線與圓錐曲線的位置關系檢測.doc》由會員分享,可在線閱讀,更多相關《2019屆高考數(shù)學總復習 第九單元 解析幾何 第62講 直線與圓錐曲線的位置關系檢測.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第62講 直線與圓錐曲線的位置關系 1.直線y=kx-k+1與橢圓+=1的位置關系為(A) A.相交 B.相切 C.相離 D.不確定 因為直線可變形為y=k(x-1)+1,可知直線恒過(1,1)點,而(1,1)在橢圓內,所以直線與橢圓相交. 2.橢圓mx2+ny2=1與直線y=1-x交于M,N兩點,原點與線段MN中點的連線的斜率為,則的值是(A) A. B. C.2 D. 消去y,得(m+n)x2-2nx+n-1=0, 所以MN的中點為(,1-). 依題意=,即=. 3.已知雙曲線-=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(C) A.(1,2] B.(1,2) C.[2,+∞) D.(2,+∞) 因為過點F且傾斜角為60的直線與雙曲線的右支有且只有一個交點, 所以該直線的斜率的絕對值小于等于漸近線的斜率, 所以≥, 所以離心率e2==≥4, 所以e≥2,即e∈[2,+∞). 4.(2017南關區(qū)模擬)等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A、B兩點,|AB|=4,則C的實軸長為(C) A. B.2 C.4 D.8 由題意知拋物線的準線為x=-4,設等軸雙曲線方程為:x2-y2=a2(a>0), 將x=-4代入等軸雙曲線方程解得y=, 因為|AB|=4,所以2=4,解得a=2. 所以C的實軸長為4. 5.拋物線y2=4x與直線2x-y+m=0相交所得的弦長為3,則m的值為?。? . 將直線方程代入拋物線方程整理得:y2-2y+2m=0, 所以|AB|=|y1-y2|==3, 所以m=-4. 6.(2016湖北孝感模擬)若點(3,1)是拋物線y2=2px(p>0)的一條弦的中點,且這條弦所在直線的斜率為2,則p的值是 2 . 設以點(3,1)為中點的弦所在的直線交拋物線y2=2px(p>0)于A(x1,y1),B(x2,y2)兩點, 則 由①-②得y-y=2p(x1-x2), 則=,由題意知,kAB=2,且y1+y2=2. 故kAB===2.所以p=2. 7.(2017新課標卷Ⅰ)設A,B為曲線C:y=上兩點,A與B的橫坐標之和為4. (1)求直線AB的斜率; (2)設M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程. (1)設A(x1,y1),B(x2,y2), 則x1≠x2,y1=,y2=,x1+x2=4, 于是直線AB的斜率k===1. (2)由y=,得y′=. 設M(x3,y3),由題設知=1,解得x3=2,于是M(2,1). 設直線AB的方程為y=x+m, 故線段AB的中點為N(2,2+m),|MN|=|m+1|. 將y=x+m代入y=得x2-4x-4m=0. 當Δ=16(m+1)>0,即m>-1時,x1,2=22. 從而|AB|=|x1-x2|=4. 由題設知|AB|=2|MN|,即4=2(m+1), 解得m=7. 所以直線AB的方程為y=x+7. 8.(2016北京東城模擬)已知雙曲線-=1與直線x+y-1=0交于P,Q兩點,且=0(O為原點),則-的值為(B) A.1 B.2 C.3 D. 由得(b-a)x2+2ax-(a+ab)=0. 設P(x1,y1),Q(x2,y2), 則x1+x2=,x1x2=-. 因為=x1x2+y1y2 =x1x2+(1-x1)(1-x2) =2x1x2-(x1+x2)+1 =0, 所以-+1=0,即2a+2ab-2a+a-b=0, 即b-a=2ab,所以-=2. 9.平面上一機器人在行進中始終保持與點F(1,0)的距離和到直線x=-1的距離相等.若機器人接觸不到過點P(-1,0)且斜率為k的直線,則k的取值范圍是 (-∞,-1)∪(1,+∞) . 依題意可知機器人運行的軌跡方程為y2=4x. 設直線l:y=k(x+1),聯(lián)立 消去y得k2x2+(2k2-4)x+k2=0, 由Δ=(2k2-4)2-4k4<0,得k2>1, 解得k<-1或k>1. 10.(2016新課標卷Ⅰ)在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關于點P的對稱點為N,連接ON并延長交C于點H. (1)求; (2)除H以外,直線MH與C是否有其他公共點?說明理由. (1)如圖,由已知得M(0,t),P(,t). 又N為M關于點P的對稱點,故N(,t), 故直線ON的方程為y=x, 將其代入y2=2px整理得px2-2t2x=0, 解得x1=0,x2=.因此H(,2t). 所以N為OH的中點,即=2. (2)直線MH與C除H以外沒有其他公共點.理由如下: 直線MH的方程為y-t=x,即x=(y-t). 代入y2=2px得y2-4ty+4t2=0,解得y1=y(tǒng)2=2t, 即直線MH與C只有一個公共點, 所以除H以外,直線MH與C沒有其他公共點.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019屆高考數(shù)學總復習 第九單元 解析幾何 第62講 直線與圓錐曲線的位置關系檢測 2019 高考 數(shù)學 復習 第九 單元 62 直線 圓錐曲線 位置 關系 檢測
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-6311976.html