2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題39 數(shù)列與數(shù)學(xué)歸納法.doc
《2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題39 數(shù)列與數(shù)學(xué)歸納法.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題39 數(shù)列與數(shù)學(xué)歸納法.doc(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題39 數(shù)列與數(shù)學(xué)歸納法 【熱點(diǎn)聚焦與擴(kuò)展】 數(shù)學(xué)歸納法是一種重要的數(shù)學(xué)方法,其應(yīng)用主要體現(xiàn)在證明等式、證明不等式、證明整除性問題、歸納猜想證明等.本專題主要舉例說明利用數(shù)學(xué)歸納法證明數(shù)列問題. 1、數(shù)學(xué)歸納法適用的范圍:關(guān)于正整數(shù)的命題(例如數(shù)列,不等式,整除問題等),則可以考慮使用數(shù)學(xué)歸納法進(jìn)行證明 2、第一數(shù)學(xué)歸納法:通過假設(shè)成立,再結(jié)合其它條件去證成立即可.證明的步驟如下: (1)歸納驗(yàn)證:驗(yàn)證(是滿足條件的最小整數(shù))時(shí),命題成立 (2)歸納假設(shè):假設(shè)成立,證明當(dāng)時(shí),命題也成立 (3)歸納結(jié)論:得到結(jié)論:時(shí),命題均成立 3、第一歸納法要注意的地方: (1)數(shù)學(xué)歸納法所證命題不一定從開始成立,可從任意一個(gè)正整數(shù)開始,此時(shí)歸納驗(yàn)證從開始 (2)歸納假設(shè)中,要注意,保證遞推的連續(xù)性 (3)歸納假設(shè)中的,命題成立,是證明命題成立的重要條件.在證明的過程中要注意尋找與的聯(lián)系 4、第二數(shù)學(xué)歸納法:在第一數(shù)學(xué)歸納法中有一個(gè)細(xì)節(jié),就是在假設(shè)命題成立時(shí),可用的條件只有,而不能默認(rèn)其它的時(shí)依然成立.第二數(shù)學(xué)歸納法是對(duì)第一歸納法的補(bǔ)充,將歸納假設(shè)擴(kuò)充為假設(shè),命題均成立,然后證明命題成立.可使用的條件要比第一歸納法多,證明的步驟如下: (1)歸納驗(yàn)證:驗(yàn)證(是滿足條件的最小整數(shù))時(shí),命題成立 (2)歸納假設(shè):假設(shè)成立,證明當(dāng)時(shí),命題也成立 (3)歸納結(jié)論:得到結(jié)論:時(shí),命題均成立. 5.注意點(diǎn):對(duì)于歸納猜想證明類問題,有三個(gè)易錯(cuò)點(diǎn).一是歸納結(jié)論不正確;二是應(yīng)用數(shù)學(xué)歸納法,確認(rèn)n的初始值n0不準(zhǔn)確;三是在第二步證明中,忽視應(yīng)用歸納假設(shè). 【經(jīng)典例題】 例1.【2018屆重慶市第一中學(xué)5月月考】已知為正項(xiàng)數(shù)列的前項(xiàng)和,,記數(shù)列的前項(xiàng)和為,則的最小值為______. 【答案】 【解析】分析:由題意首先求得,然后利用題意結(jié)合函數(shù)的性質(zhì)確定最小值即可. 詳解:由題意結(jié)合, 以下用數(shù)學(xué)歸納法進(jìn)行證明: 當(dāng)時(shí),結(jié)論是成立的, 假設(shè)當(dāng)時(shí),數(shù)列的通項(xiàng)公式為:,則, 由題意可知:, 結(jié)合假設(shè)有:,解得:, 綜上可得數(shù)列的通項(xiàng)公式是正確的. 據(jù)此可知:,, 利用等差數(shù)列前n項(xiàng)和公式可得:, 則, 結(jié)合對(duì)勾函數(shù)的性質(zhì)可知,當(dāng)或時(shí),取得最小值, 當(dāng)時(shí), 當(dāng)時(shí), 由于,據(jù)此可知的最小值為. 點(diǎn)睛:本題的關(guān)鍵在于合理利用歸納推理得到數(shù)列的通項(xiàng)公式.歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個(gè)體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會(huì)越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法. 例2. 設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,滿足Sn=2an-2 (n∈N*) (1)求的值,并由此猜想數(shù)列{an}的通項(xiàng)公式an; (2)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想. 【答案】(1);(2)見解析. 當(dāng)n=4時(shí),a1+a2+a3+a4=S4=2a4-2,∴a4=16. 由此猜想: (n∈N*). (2)證明:①當(dāng)n=1時(shí),a1=2,猜想成立. ②假設(shè)n=k(k≥1且k∈N*)時(shí),猜想成立,即, 那么n=k+1時(shí), ak+1=Sk+1-Sk=2ak+1-2ak ∴ak+1=2ak, 這表明n=k+1時(shí),猜想成立, 由①②知猜想 成立. 點(diǎn)睛:數(shù)學(xué)歸納法被用來證明與自然數(shù)有關(guān)的命題:遞推基礎(chǔ)不可少,歸納假設(shè)要用到,結(jié)論寫明莫忘掉. 例3.已知數(shù)列滿足:,. (Ⅰ)試求數(shù)列,,的值; (Ⅱ)請(qǐng)猜想的通項(xiàng)公式,并運(yùn)用數(shù)學(xué)歸納法證明之. 【答案】(Ⅰ) , , . (Ⅱ),證明見解析. 由此猜想. 下面用數(shù)學(xué)歸納法證明之: 當(dāng) 時(shí),,結(jié)論成立; 假設(shè)時(shí),結(jié)論成立,即有, 則對(duì)于時(shí), ∴當(dāng)時(shí),結(jié)論成立. 綜上,可得對(duì), 成立 點(diǎn)睛:運(yùn)用數(shù)學(xué)歸納法證明數(shù)學(xué)問題的步驟及其需要注意的問題: 1、第一步:歸納奠基(即驗(yàn)證時(shí)成立); 第二步:歸納遞推(即假設(shè)時(shí)成立,驗(yàn)證時(shí)成立); 3、兩個(gè)條件缺一不可,在驗(yàn)證時(shí)成立時(shí)一定要用到歸納假設(shè)時(shí)的結(jié)論,最后得到的形式應(yīng)與前面的完全一致. 例4.【2018屆浙江省溫州市高三9月一?!恳阎獢?shù)列中,,(). (1)求證:; (2)求證:是等差數(shù)列; (3)設(shè),記數(shù)列的前項(xiàng)和為,求證: . 【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析. 【解析】試題分析:(1)利用數(shù)學(xué)歸納法可證明;(2)化簡(jiǎn),由可得是等差數(shù)列;(3)由(2)可得,從而可得,先證明,利用放縮法及等比數(shù)列求和公式可證結(jié)論. (2)由,得, 所以, 即, 即, 所以,數(shù)列是等差數(shù)列. (3)由(2)知,, ∴, 因此, 當(dāng)時(shí),, 即時(shí),, 所以時(shí),, 顯然,只需證明,即可. 當(dāng)時(shí), . 例5.已知函數(shù) (1)若函數(shù)在處切線斜率為,,已知,求證: (2)在(1)的條件下,求證: 【答案】見解析 下面用數(shù)學(xué)歸納法證明: 當(dāng)時(shí),成立 假設(shè)成立,則時(shí) 時(shí),不等式成立 (2) 由(1)可知 例6.【浙江省紹興市2018屆5月調(diào)測(cè)】已知數(shù)列中. (1)證明:; (2)設(shè)數(shù)列的前項(xiàng)和為,證明:. 【答案】(1)見解析;(2)見解析 詳解:(1)數(shù)學(xué)歸納法:①當(dāng)時(shí),,,顯然有. ②假設(shè)當(dāng),結(jié)論成立,即, 那么,, 即, 綜上所述成立. (2)由(1)知:,, 即 ,; 點(diǎn)睛:解決數(shù)列與函數(shù)、不等式的綜合問題的關(guān)鍵是從題設(shè)中提煉出數(shù)列的基本條件,綜合函數(shù)與不等式的知識(shí)求解;數(shù)列是特殊的函數(shù),以數(shù)列為背景的不等式證明問題及以函數(shù)為背景的數(shù)列的綜合問題體現(xiàn)了在知識(shí)交匯點(diǎn)上命題的特點(diǎn). 例7.【福建省南平市2018屆5月檢查】己知函數(shù). (Ⅰ)求函數(shù)的單調(diào)區(qū)間; (Ⅱ)若函數(shù)的最小值為-1,,數(shù)列滿足,,記,表示不超過的最大整數(shù).證明:. 【答案】(Ⅰ)見解析; (Ⅱ)見解析. 詳解:(Ⅰ)函數(shù)的定義域?yàn)? 1、當(dāng)時(shí),,即在上為增函數(shù); 2、當(dāng)時(shí),令得,即在上為增函數(shù); 同理可得在上為減函數(shù). (Ⅱ)Q有最小值為-1,\由(Ⅰ)知函數(shù)的最小值點(diǎn)為, 即,則, 令, 當(dāng)時(shí),,故在上是減函數(shù) 所以當(dāng)時(shí) ∵,∴.(未證明,直接得出不扣分) 則.由得, 從而.∵,∴. 猜想當(dāng)時(shí),. 下面用數(shù)學(xué)歸納法證明猜想正確. 1、當(dāng)時(shí),猜想正確. 2、假設(shè)時(shí),猜想正確. 即時(shí),. 當(dāng)時(shí),有, 由(Ⅰ)知是上的增函數(shù), 則,即, 例8.已知函數(shù),在原點(diǎn)處切線的斜率為,數(shù)列滿足為常數(shù)且,. (1)求的解析式; (2)計(jì)算,并由此猜想出數(shù)列的通項(xiàng)公式; (3)用數(shù)學(xué)歸納法證明你的猜想. 【答案】(1);(2) ;(3)證明見解析. (2),則, ,, 由此猜想數(shù)列的通項(xiàng)公式應(yīng)為. (3)①當(dāng)時(shí),猜想顯然成立, ②假設(shè)時(shí),猜想成立,即, 則當(dāng)時(shí),, 即當(dāng)時(shí),猜想成立.由①②知,對(duì)一切正整數(shù)都成立. 例9.已知數(shù)列是等差數(shù)列,. (1)求數(shù)列的通項(xiàng)公式; (2)設(shè)數(shù)列的通項(xiàng) (其中且)記是數(shù)列的前項(xiàng)和,試比較與的大小,并證明你的結(jié)論. 【答案】(1);(2)當(dāng)時(shí),,當(dāng)時(shí),,證明見解析. 詳解:(1) 設(shè)數(shù)列{bn}的公差為d, 由題意得,∴bn=3n-2 . (2)證明:由bn=3n-2知Sn=loga(1+1)+loga(1+)+…+loga(1+) =loga[(1+1)(1+)…(1+ )] 而logabn+1=loga,于是,比較Sn與logabn+1 的大小 比較(1+1)(1+)…(1+)與的大小 取n=1,有(1+1)= 取n=2,有(1+1)(1+ 推測(cè) (1+1)(1+)…(1+)> (*) ①當(dāng)n=1時(shí),已驗(yàn)證(*)式成立 ②假設(shè)n=k(k≥1)時(shí)(*)式成立,即(1+1)(1+)…(1+)> 則當(dāng)n=k+1時(shí), , 即當(dāng)n=k+1時(shí),(*)式成立 由①②知,(*)式對(duì)任意正整數(shù)n都成立 于是,當(dāng)a>1時(shí),Sn>logabn+1 ,當(dāng) 0<a<1時(shí),Sn<logabn+1 . 例10.【2018年浙江省高考模擬】已知數(shù)列滿足: . 證明:當(dāng)時(shí), (1); (2); (3). 【答案】(1)見解析;(2)見解析;(3)見解析 由數(shù)列的遞推式,以及(2)的結(jié)論可得,根據(jù)等比數(shù)列的通項(xiàng)公式即可證明,再結(jié)合已知可得,即可證明不等式成立. 詳解:(1)數(shù)學(xué)歸納法證明: 當(dāng)時(shí), 成立 假設(shè)時(shí),成立,那么時(shí),假設(shè), 則,矛盾 所以,故得證 所以,故 (2)由 得 設(shè) 則 (3)由(2)得,則 所以 又,所以,所以,故 所以,所以 【精選精練】 1.用數(shù)學(xué)歸納法證明“”時(shí),由時(shí)等式成立推證時(shí),左邊應(yīng)增加的項(xiàng)為__________ . 【答案】 點(diǎn)睛:項(xiàng)數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯(cuò)點(diǎn),要使問題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項(xiàng)的變化規(guī)律;二是相鄰兩項(xiàng)之間的變化規(guī)律. 2.用火柴棒擺“金魚”,如圖所示: 按照上面的規(guī)律,第n個(gè)“金魚”圖需要火柴棒的根數(shù)為______________. 【答案】 【解析】試題分析:由題意得:“金魚”圖需要火柴棒的根數(shù)依次構(gòu)成一個(gè)等差數(shù)列,首項(xiàng)為8,公差為6,因此第n項(xiàng)為 x+kw 3.已知數(shù)列中,且. (1)求,,; (2)根據(jù)(1)的結(jié)果猜想出的一個(gè)通項(xiàng)公式,并用數(shù)學(xué)歸納法進(jìn)行證明; (3)若,且,求. 【答案】(1);(2),證明見解析;(3). (2)由此猜想. 下面用數(shù)學(xué)歸納法加以證明: ①當(dāng)時(shí),由(1)知成立; ②假設(shè),結(jié)論成立,即成立. 則當(dāng)時(shí),有,即 即時(shí),結(jié)論也成立; 由①②可知,的通項(xiàng)公式為. (3)由(2)知, . 4.已知數(shù)列的前項(xiàng)和為,且滿足,. (1)計(jì)算,,,根據(jù)計(jì)算結(jié)果,猜想的表達(dá)式; (2)用數(shù)學(xué)歸納法證明你猜想的結(jié)論. 【答案】(1)答案見解析;(2)證明見解析. 【解析】分析:(1)計(jì)算,,,根據(jù)計(jì)算結(jié)果,猜想. (2)用數(shù)學(xué)歸納法證明猜想的結(jié)論. 由此猜想, (2)下面用數(shù)學(xué)歸納法證明, ①當(dāng)時(shí),顯然成立, ②假設(shè)當(dāng)時(shí)猜想成立,即, 由題意得, ∴, ∴, ∴當(dāng)時(shí)猜想也成立, 由①和②,可知猜想成立,即. 點(diǎn)睛:(1)在利用數(shù)學(xué)歸納法證明數(shù)學(xué)問題時(shí),一定要注意利用前面的時(shí)的假設(shè),否則就是偽數(shù)學(xué)歸納法,是錯(cuò)誤的.(2)看到或,要注意聯(lián)想到項(xiàng)和公式解題. 5.已知數(shù)列滿足,. (1)計(jì)算,,,根據(jù)計(jì)算結(jié)果,猜想的表達(dá)式; (2)用數(shù)學(xué)歸納法證明你猜想的結(jié)論. 【答案】(1)答案見解析;(2)證明見解析. 由此猜想; (2)下面用數(shù)學(xué)歸納法證明, ①當(dāng)時(shí),顯然成立, ②假設(shè)當(dāng)時(shí)猜想成立,即, 由題意得,∴當(dāng)時(shí)猜想也成立; 由①和②,可知猜想成立,即. 6.已知數(shù)列滿足且. (1)計(jì)算、、的值,由此猜想數(shù)列的通項(xiàng)公式; (2)用數(shù)學(xué)歸納法對(duì)你的結(jié)論進(jìn)行證明. 【答案】(1),;(2)證明見解析. 【解析】試題分析:(1)由,,將代入上式計(jì)算出、、的值,根據(jù)共同規(guī)律猜想即可;(2)對(duì)于,用數(shù)學(xué)歸納法證明即可.①當(dāng)時(shí),證 即當(dāng)時(shí),結(jié)論也成立, 由①②得,數(shù)列的通項(xiàng)公式為. 7.在數(shù)列中,,,,, . ()計(jì)算,,的值. ()猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明. 【答案】(1),,;(2),證明見解析. ()由()可猜想:,證明:當(dāng)時(shí),,等式成立,假設(shè)時(shí),等式成立,即,則當(dāng)時(shí), ,即當(dāng)時(shí),等式也成立,綜上所述,對(duì)任意自然數(shù),. 8.已知數(shù)列數(shù)列{an}的通項(xiàng)公式an=(-1)n(2n-1)(n∈N*),Sn為其前n項(xiàng)和. (1)求S1,S2,S3,S4的值; (2)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論. 【答案】(1)S1=-1,S2=2,S3=-3,S4=4;(2)答案見解析. 【解析】試題分析:(Ⅰ)根據(jù),代入計(jì)算,可求的值;(Ⅱ)由(Ⅰ)猜想的表達(dá)式,再根據(jù)數(shù)學(xué)歸納法的證題步驟進(jìn)行證明,檢驗(yàn)時(shí)等式成立,假設(shè)時(shí)命題成立,證明時(shí)命題也成立即可. 試題解析:(1)依題意可得S1=-1,S2=-1+3=2,S3=-1+3-5=-3,S4=-1+3-5+7=4; (2)猜想:Sn=(-1)nn. 證明:①當(dāng)n=1時(shí),猜想顯然成立; ②假設(shè)當(dāng)n=k時(shí),猜想成立,即Sk=(-1)kk, 那么當(dāng)n=k+1時(shí),Sk+1=(-1)kk+ak+1=(-1)kk+(-1)k+1(2k+1)=(-1)k+1(k+1). 即n=k+1時(shí),猜想也成立. 故由①和②可知,猜想成立. 【方法點(diǎn)睛】本題考查歸納推理以及數(shù)學(xué)歸納法的應(yīng)用,屬于中檔題.由歸納推理所得的結(jié)論雖然未必是可靠的,但它由特殊到一般,由具體到抽象的認(rèn)識(shí)功能,對(duì)科學(xué)的發(fā)現(xiàn)十分有用,觀察、實(shí)驗(yàn)、對(duì)有限的資料作歸納整理,提出帶規(guī)律性的說法是科學(xué)研究的最基本的方法之一.通過不完全歸納法發(fā)現(xiàn)的規(guī)律,用數(shù)學(xué)歸納法加以證明才能應(yīng)用. 9.設(shè), ,令, , . (1)寫出, , 的值,并猜想數(shù)列的通項(xiàng)公式; (2)用數(shù)學(xué)歸納法證明你的結(jié)論. 【答案】(1)a1=1,a2=,a3=;a4=,猜想an= (n∈N+);(2)證明見解析. 試題解析: (1)∵a1=1, ∴a2=f(a1)=f(1)=, a3=f(a2)=;a4=f(a3)=, 猜想an= (n∈N+); (2)證明:①易知,n=1時(shí),猜想正確. ②假設(shè)n=k時(shí)猜想正確,即ak=, 則ak+1=f(ak)==. 這說明n=k+1時(shí)猜想正確. 由①②知,對(duì)于任何n∈N+,都有an=. 點(diǎn)睛:數(shù)學(xué)歸納法是一種重要的數(shù)學(xué)思想方法,主要用于解決與正整數(shù)有關(guān)的數(shù)學(xué)問題.證明時(shí)步驟(1)和(2)缺一不可,步驟(1)是步驟(2)的基礎(chǔ),步驟(2)是遞推的依據(jù). 10.【2017浙江,22】已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(). 證明:當(dāng)時(shí), (Ⅰ)0<xn+1<xn; (Ⅱ)2xn+1? xn≤; (Ⅲ)≤xn≤. 【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析. 【解析】 (Ⅱ)由得 【名師點(diǎn)睛】本題主要考查數(shù)列的概念、遞推關(guān)系與單調(diào)性等基礎(chǔ)知識(shí),不等式及其應(yīng)用,同時(shí)考查推理論證能力、分析問題和解決問題的能力,屬于難題.本題主要應(yīng)用:(1)數(shù)學(xué)歸納法證明不等式;(2)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性證明不等式;(3)由遞推關(guān)系證明. 11.【2018屆浙江省名校協(xié)作體高三上學(xué)期聯(lián)考】已知無窮數(shù)列的首項(xiàng), . (Ⅰ)證明: ; (Ⅱ) 記, 為數(shù)列的前項(xiàng)和,證明:對(duì)任意正整數(shù), . 【答案】(Ⅰ)見解析;(Ⅱ)見解析. 【解析】試題分析; (I)運(yùn)用數(shù)學(xué)歸納法推理論證, (Ⅱ)由已知,即,可得數(shù)列為遞增數(shù)列. 又 ,易知為遞減數(shù)列, 試題解析:(Ⅰ)證明:①當(dāng)時(shí)顯然成立; ②假設(shè)當(dāng) 時(shí)不等式成立,即, 那么當(dāng)時(shí), ,所以, 即時(shí)不等式也成立. 綜合①②可知, 對(duì)任意成立. (Ⅱ),即,所以數(shù)列為遞增數(shù)列. 又 ,易知為遞減數(shù)列, 所以也為遞減數(shù)列, 所以當(dāng)時(shí), 所以當(dāng)時(shí), 當(dāng)時(shí), ,成立; 當(dāng)時(shí), 綜上,對(duì)任意正整數(shù), 12.已知,. (1)若,求的值; (2)若,求的值; (3)若是展開式中所有無理項(xiàng)的二項(xiàng)式系數(shù)和,數(shù)列是各項(xiàng)都大于1的數(shù)組成的數(shù)列,試用數(shù)學(xué)歸納法證明:. 【答案】(1). (2)165.(3)見解析. 所以 . (3)因?yàn)?,所以要得無理項(xiàng),必為奇數(shù), 所以, 要證明, 只要證明,用數(shù)學(xué)歸納法證明如下: (Ⅰ)當(dāng)時(shí),左邊=右邊, 當(dāng)時(shí),, ∴時(shí),不等式成立. 綜合(Ⅰ)(Ⅱ)可知對(duì)一切均成立. ∴不等式成立 . 點(diǎn)睛:本題主要考查二項(xiàng)式定理的應(yīng)用、初等函數(shù)求導(dǎo)公式以及數(shù)學(xué)歸納法證明不等式,屬于難題.利用數(shù)學(xué)歸納法證明結(jié)論的步驟是:(1)驗(yàn)證時(shí)結(jié)論成立;(2)假設(shè)時(shí)結(jié)論正確,證明時(shí)結(jié)論正確(證明過程一定要用假設(shè)結(jié)論);(3)得出結(jié)論.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)大一輪復(fù)習(xí) 熱點(diǎn)聚焦與擴(kuò)展 專題39 數(shù)列與數(shù)學(xué)歸納法 2019 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 熱點(diǎn) 聚焦 擴(kuò)展 專題 39 數(shù)列 歸納法
鏈接地址:http://m.kudomayuko.com/p-6314849.html