《精編高中數(shù)學(xué)北師大版選修22教案:第5章 數(shù)系的擴(kuò)充與復(fù)數(shù)的概念 參考教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《精編高中數(shù)學(xué)北師大版選修22教案:第5章 數(shù)系的擴(kuò)充與復(fù)數(shù)的概念 參考教案(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精編北師大版數(shù)學(xué)資料
數(shù)系的擴(kuò)充與復(fù)數(shù)的概念
一、教學(xué)目標(biāo):
1、知識(shí)與技能:了解引進(jìn)復(fù)數(shù)的必要性;理解并掌握虛數(shù)的單位i;
2、過程與方法:理解并掌握虛數(shù)單位與實(shí)數(shù)進(jìn)行四則運(yùn)算的規(guī)律;
3、 情感、態(tài)度與價(jià)值觀:理解并掌握復(fù)數(shù)的有關(guān)概念(復(fù)數(shù)集、代數(shù)形式、虛數(shù)、純虛數(shù)、實(shí)部、虛部) 理解并掌握復(fù)數(shù)相等的有關(guān)概念。
二、教學(xué)重點(diǎn),難點(diǎn):復(fù)數(shù)的基本概念以及復(fù)數(shù)相等的充要條件。
三、教學(xué)方法:閱讀理解,探析歸納,講練結(jié)合
四、教學(xué)過程
(一)、問題情境
1、情境:數(shù)的概念的發(fā)展:從正整數(shù)擴(kuò)充到整數(shù),從整數(shù)擴(kuò)充到有理數(shù),從有理數(shù)擴(kuò)充到實(shí)數(shù),數(shù)的概念是不斷發(fā)展的,其發(fā)展的動(dòng)力來
2、自兩個(gè)方面.
①解決實(shí)際問題的需要.由于計(jì)數(shù)的需要產(chǎn)生了自然數(shù);為了刻畫具有相反意義的量的需要產(chǎn)生了負(fù)數(shù);由于測(cè)量等需要產(chǎn)生了分?jǐn)?shù);為了解決度量正方形對(duì)角線長(zhǎng)的問題產(chǎn)生了無理數(shù)(即無限不循環(huán)小數(shù)).
②解方程的需要.為了使方程有解,就引進(jìn)了負(fù)數(shù),數(shù)系擴(kuò)充到了整數(shù)集;為了使方程有解,就要引進(jìn)分?jǐn)?shù),數(shù)系擴(kuò)充到了有理數(shù)集;為了使方程有解,就要引進(jìn)無理數(shù),數(shù)系擴(kuò)充到了實(shí)數(shù)集. 引進(jìn)無理數(shù)以后,我們已經(jīng)能使方程永遠(yuǎn)有解.但是,這并沒有徹底解決問題,當(dāng)時(shí),方程在實(shí)數(shù)范圍內(nèi)無解.為了使方程有解,就必須把實(shí)數(shù)概念進(jìn)一步擴(kuò)大,這就必須引進(jìn)新的數(shù).(可以以分解因式:為例)
2、問題:實(shí)數(shù)集應(yīng)怎樣擴(kuò)充呢?
3、(二)、新課探析
1、為了使方程有解,使實(shí)數(shù)的開方運(yùn)算總可以實(shí)施,實(shí)數(shù)集的擴(kuò)充就從引入平方等于的“新數(shù)”開始.為此,我們引入一個(gè)新數(shù),叫做虛數(shù)單位().并作如下規(guī)定:①;②實(shí)數(shù)可以與進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有的加法、乘法運(yùn)算律仍然成立.在這種規(guī)定下,可以與實(shí)數(shù)相乘,再同實(shí)數(shù)相加得.由于滿足乘法交換律和加法交換律,上述結(jié)果可以寫成 ()的形式.
2、復(fù)數(shù)概念及復(fù)數(shù)集
形如()的數(shù)叫做復(fù)數(shù)。全體復(fù)數(shù)構(gòu)成的集合叫做復(fù)數(shù)集,一般用字母來表示,
即.顯然有N*NZQRC.
3、復(fù)數(shù)的有關(guān)概念:1) 復(fù)數(shù)的表示:通常用字母表示,即(),其中分別叫做復(fù)數(shù)的實(shí)部與虛部;2)虛數(shù)和純虛數(shù):①?gòu)?fù)
4、數(shù)(),當(dāng)時(shí),就是實(shí)數(shù).②復(fù)數(shù)(),當(dāng)時(shí),叫做虛數(shù)。
特別的,當(dāng),時(shí),叫做純虛數(shù).
4、復(fù)數(shù)集的分類
分類要求不重復(fù)、不遺漏,同一級(jí)分類標(biāo)準(zhǔn)要統(tǒng)一.根據(jù)上述原則,復(fù)數(shù)集的分類如下:
5、兩復(fù)數(shù)相等
如果兩個(gè)復(fù)數(shù)與()的實(shí)部與虛部分別相等,我們就說這兩個(gè)復(fù)數(shù)相等.即,(復(fù)數(shù)相等的充要條件),
特別地:(復(fù)數(shù)為的充要條件).
復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題來解決的途徑.
6、兩個(gè)復(fù)數(shù)不能比較大?。簝蓚€(gè)實(shí)數(shù)可以比較大小,但兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù),只有相等與不等關(guān)系,不能比較它們的大小。
7、共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)的實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)叫做互
5、為共軛復(fù)數(shù)虛部不等于0的兩個(gè)共軛復(fù)數(shù)也叫做共軛虛數(shù)。
(三)、知識(shí)運(yùn)用,能力提高
1、例題:例1.寫出下列復(fù)數(shù)的實(shí)部與虛部,并指出哪些是實(shí)數(shù), 哪些是虛數(shù),哪些是純虛數(shù).
解: 的實(shí)部分別是;
虛部分別是.是實(shí)數(shù);是虛數(shù),其中是純虛數(shù).
例2、實(shí)數(shù)取什么值時(shí),復(fù)數(shù)是(1)實(shí)數(shù)?(2)虛數(shù)?(3)純虛數(shù)?
分析:由可知,都是實(shí)數(shù),根據(jù)復(fù)數(shù)是實(shí)數(shù)、虛數(shù)和純虛數(shù)的條件可以分別確定的值。
解:(1)當(dāng),即時(shí),復(fù)數(shù)是實(shí)數(shù);(2)當(dāng),即時(shí),復(fù)數(shù)是虛數(shù);(3)當(dāng),且,即時(shí)復(fù)數(shù)是純虛數(shù)。
(變式引申):已知,復(fù)數(shù),當(dāng)為何值時(shí):
(1);(2)是虛數(shù);(3)是純虛數(shù).
解:(1
6、)當(dāng)且,即時(shí),是實(shí)數(shù);
(2)當(dāng)且,即且時(shí),是虛數(shù);
(3)當(dāng)且,即或時(shí),為純虛數(shù).
思考:是復(fù)數(shù)為純虛數(shù)的充分條件嗎?
答:不是,因?yàn)楫?dāng)且時(shí),才是純虛數(shù),所以是復(fù)數(shù)為純虛數(shù)的必要而非充分條件.
例3、已知,求實(shí)數(shù)的值.
解:根據(jù)兩個(gè)復(fù)數(shù)相等的充要條件,可得:,解得:.
(變式引申):已知,求復(fù)數(shù).
解:設(shè),則,
, 由復(fù)數(shù)相等的條件
.
2.練習(xí):(1)已知復(fù)數(shù),且,則 .
解:,則.故虛部
或.但時(shí),,不合題意,故舍去,故.
四.回顧小結(jié):
1、能夠識(shí)別復(fù)數(shù),并能說出復(fù)數(shù)在什么條件下是實(shí)數(shù)、虛數(shù)、純虛數(shù);
2、復(fù)數(shù)相等的充要條件。
(三)小結(jié):復(fù)數(shù)、虛數(shù)、純虛數(shù)的概念及它們之間的關(guān)系及兩復(fù)數(shù)相等的充要條件。
(四)、鞏固練習(xí):
1.指出下列復(fù)數(shù)哪些是實(shí)數(shù)、虛數(shù)、純虛數(shù),是虛數(shù)的找出其實(shí)部與虛部。
2.判斷① 兩復(fù)數(shù),若虛部都是3,則實(shí)部大的那個(gè)復(fù)數(shù)較大。② 復(fù)平面內(nèi),所有純虛數(shù)都落在虛軸上,所有虛軸上的點(diǎn)都是純虛數(shù)。
3若,則的值是 。
4..已知是虛數(shù)單位,復(fù)數(shù),當(dāng)取何實(shí)數(shù)時(shí),是:
(1)實(shí)數(shù) (2) 虛數(shù) (3)純虛數(shù) (4)零
(五)、課外練習(xí):
(六)、課后作業(yè):
五、教后反思: