2020年中考數(shù)學(xué)二輪復(fù)習(xí) 重難題型突破 類型二 與切線有關(guān)的證明與計算

上傳人:Sc****h 文檔編號:81858757 上傳時間:2022-04-28 格式:DOC 頁數(shù):6 大?。?19KB
收藏 版權(quán)申訴 舉報 下載
2020年中考數(shù)學(xué)二輪復(fù)習(xí) 重難題型突破 類型二 與切線有關(guān)的證明與計算_第1頁
第1頁 / 共6頁
2020年中考數(shù)學(xué)二輪復(fù)習(xí) 重難題型突破 類型二 與切線有關(guān)的證明與計算_第2頁
第2頁 / 共6頁
2020年中考數(shù)學(xué)二輪復(fù)習(xí) 重難題型突破 類型二 與切線有關(guān)的證明與計算_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年中考數(shù)學(xué)二輪復(fù)習(xí) 重難題型突破 類型二 與切線有關(guān)的證明與計算》由會員分享,可在線閱讀,更多相關(guān)《2020年中考數(shù)學(xué)二輪復(fù)習(xí) 重難題型突破 類型二 與切線有關(guān)的證明與計算(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、類型二 與切線有關(guān)的證明與計算 例1、如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點. (1)求證:AB是⊙O的直徑; (2)判斷DE與⊙O的位置關(guān)系,并加以證明; (3)若⊙O的半徑為3,∠BAC=60°,求DE的長. 【分析】:(1)連接AD,證AD⊥BC可得;(2)連接OD,利用中位線定理得到OD與AC平行,可證∠ODE為直角,由OD為半徑,可證DE與圓O相切;(3)連接BF,先證三角形ABC為等邊三角形,再求出BF的長,由DE為三角形CBF中位線,即可求出DE的長. 【答案】:(1)連接AD,∵AB=AC,

2、BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB為圓O的直徑 (2)DE與圓O相切,證明:連接OD,∵O,D分別為AB,BC的中點,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD為圓的半徑,∴DE與圓O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC為等邊三角形,∴AB=AC=BC=6,連接BF,∵AB為圓O的直徑,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D為BC的中點,∴E為CF的中點,即DE為△BCF中位線,在Rt△ABF中,AB=6,AF=3,根據(jù)勾股定理得BF==3,則DE=BF= 例2、如圖,△ABC內(nèi)接于⊙O,BD為

3、⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC. (1)求證:BE是⊙O的切線; (2)已知CG∥EB,且CG與BD,BA分別相交于點F,G,若BG·BA=48,F(xiàn)G=,DF=2BF,求AH的值. 【分析】:(1)證∠EBD=90°即可;(2)由△ABC∽△CBG得=,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通過計算發(fā)現(xiàn)CG=AG,可證CH=CB,即可求出AC. 【答案】:(1)連接CD,∵BD是直徑,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+

4、∠EBC=90°,∴BE⊥BD,∴BE是⊙O切線 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△CBG,∴=,即BC2=BG·BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF==4,∴CG=CF+FG=5,在Rt△BFG中,BG==3,∵BG·BA=48,∴BA=8,∴AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC-CH

5、= 例3、如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF. (1)求∠CDE的度數(shù); (2)求證:DF是⊙O的切線; (3)若AC=2DE,求tan∠ABD的值. 【答案】:(1)∵對角線AC為⊙O的直徑,∴∠ADC=90°,∴∠EDC=90° (2)連接DO,∵∠EDC=90°,F(xiàn)是EC的中點,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=∠OCF=90°,∴DF是⊙O的切線 (3)∵∠E+

6、∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD·DE.設(shè)DE=x,則AC=2x,AC2-AD2=DC2=AD·DE,即(2x)2-AD2=AD·x,整理得AD2+AD·x-20x2=0,解得AD=4x或AD=-5x(舍去),則DC==2x,故tan∠ABD=tan∠ACD===2 例4、如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD,AC分別交于點E,F(xiàn),且∠ACB=∠DCE. (1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論; (2)若tan∠ACB=,BC=2,

7、求⊙O的半徑. 【答案】:(1)直線CE與⊙O相切. 理由如下:∵四邊形ABCD是矩形,∴BC∥AD,∴∠ACB=∠DAC,又∵∠ACB=∠DCE,∴∠DAC=∠DCE,連接OE,有OA=OE,則∠DAC=∠AEO=∠DCE.∵∠DCE+∠DEC=90°,∴∠AEO+∠DEC=90°,∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半徑,∴直線CE與⊙O相切 (2)∵tan∠ACB==,BC=2,∴AB=BC·tan∠ACB=,∴AC=.又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC·tan∠DCE=1.在Rt△CDE中,CE==,設(shè)⊙O的半徑為r,則在Rt△C

8、OE中,CO2=OE2+CE2,即(-r)2=r2+3,解得r=                 例5、如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點D,BD的延長線交AC于點E. (1)求證:∠1=∠CAD; (2)若AE=EC=2,求⊙O的半徑. 【答案】:(1)∵AB為⊙O的直徑,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC為⊙O的切線,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD (2)∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD∶CA=CE∶CD,∴CD2=

9、CA·CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,設(shè)⊙O的半徑為x,則OA=OD=x,在Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得x=,∴⊙O的半徑為 例6、如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,且有∠EBD=∠CAB. (1)求證:BE是⊙O的切線; (2)若BC=,AC=5,求圓的直徑AD及切線BE的長. 【答案】:(1)連接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直徑,∴∠ABD=90°,OA=OB,∴∠BAD=∠ABO,∴∠

10、EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABO+∠OBD=∠ABD=90°,∵點B在⊙O上,∴BE是⊙O的切線 (2)設(shè)圓的半徑為R,連接CD,∵AD為⊙O的直徑,∴∠ACD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四邊形ACBD是圓內(nèi)接四邊形,∴∠BDE=∠ACB,∵∠DBE=∠CAB,∴△DBE∽△CAB,∴=,∴=,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴=,∴=,∵R>0,∴R=3,∴AB==,∵=,∴BE= 例7、如圖,CD是⊙O的直徑,AB是⊙O的弦,AB⊥CD,垂足為G,OG∶OC=3∶5,AB

11、=8. (1)求⊙O的半徑; (2)點E為圓上一點,∠ECD=15°,將沿弦CE翻折,交CD于點F,求圖中陰影部分的面積. 【答案】:(1)連接AO,∵CD為⊙O的直徑,AB⊥CD,AB=8,∴AG=4,∵OG∶OC=3∶5,∴設(shè)⊙O的半徑為5k,則OG=3k,∴(3k)2+42=(5k)2,解得k=1或k=-1(舍去),∴5k=5,即⊙O的半徑是5 (2)將陰影部分沿CE翻折,點F的對應(yīng)點為M,∵∠ECD=15°,由對稱性可知,∠DCM=30°,S陰影=S弓形CBM,連接OM,則∠MOD=60°,∴∠MOC=120°,過點M作MN⊥CD于點N,∴MN=MO·sin60°=5×=,

12、∴S陰影=S扇形OMC-S△OMC=-×5×=-,即圖中陰影部分的面積是- 例8、如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A,B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F. (1)求證:AE=BF; (2)連接GB,EF,求證:GB∥EF; (3)若AE=1,EB=2,求DG的長. 【答案】:(1)連接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB為圓O的直徑,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠

13、A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,又∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,可證△AED≌△BFD(ASA),∴AE=BF (2)連接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF (3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根據(jù)勾股定理得EF2=EB2+BF2,∵EB=2,BF=1,∴EF==,∵△DEF為等腰直角三角形,∠EDF=90°,∴cos∠DEF==,∵EF=,∴DE=×=,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴=,即GE·ED=AE·EB,∴·GE=2,∴GE=,則GD=GE+ED= 6

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!