《(東營專版)2019年中考數(shù)學(xué)復(fù)習(xí) 第六章 圓 第二節(jié) 與圓有關(guān)的位置關(guān)系練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(東營專版)2019年中考數(shù)學(xué)復(fù)習(xí) 第六章 圓 第二節(jié) 與圓有關(guān)的位置關(guān)系練習(xí)(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第二節(jié) 與圓有關(guān)的位置關(guān)系
姓名:________ 班級(jí):________ 用時(shí):______分鐘
1.(2018·湘西州中考)已知⊙O的半徑為5 cm,圓心O到直線l的距離為5 cm,則直線l與⊙O的位置關(guān)系為( )
A.相交 B.相切
C.相離 D.無法確定
2.(2019·改編題)設(shè)⊙O的半徑為3,點(diǎn)O到直線l的距離為d,若直線l與⊙O至少有一個(gè)公共點(diǎn),則d應(yīng)滿足的條件是( )
A.d=3 B.d≤3 C.d<3 D.d>3
3.(2019·改編題)如圖所示,是一塊三角形的草坪,現(xiàn)要在草坪上建一涼亭供大家休息,要使涼亭
2、到草坪三條邊的距離相等,涼亭的位置應(yīng)選在( )
A.△ABC的三條中線的交點(diǎn)
B.△ABC三邊的中垂線的交點(diǎn)
C.△ABC三條角平分線的交點(diǎn)
D.△ABC三條高所在直線的交點(diǎn)
4.(2018·深圳中考)如圖,一把直尺,60°的直角三角板和光盤如圖擺放,A為60°角與直尺交點(diǎn),AB=3,則光盤的直徑是( )
A.3 B.3 C.6 D.6
5.(2018·重慶中考A卷)如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD與⊙O相切于點(diǎn)D,過點(diǎn)B作PD的垂線交PD的延長線于點(diǎn)C,若⊙O的半徑為4,BC=6,則PA的長為( )
3、A.4 B.2 C.3 D.2.5
6.(2018·臺(tái)州中考)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)D.若∠A=32°,則∠D=________度.
7.(2018·連云港中考)如圖,AB是⊙O的弦,點(diǎn)C在過點(diǎn)B的切線上,且OC⊥OA,OC交AB于點(diǎn)P,已知∠OAB=22°,則∠OCB=__________.
8.(2018·湖州中考)如圖,已知△ABC的內(nèi)切圓⊙O與BC邊相切于點(diǎn)D,連接OB,OD.若∠ABC=40°,則∠BOD的度數(shù)是__________.
9.(2018·婁底中考)如圖,已知半圓O與四邊形ABC
4、D的邊AD,AB,BC都相切,切點(diǎn)分別為D,E,C,半徑OC=1,則AE·BE=________.
10.(2019·改編題)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點(diǎn)C的⊙O的切線,∠BAC=∠CAD.
(1)求證:AD⊥EF;
(2)若∠B=30°,AB=12,求AD的長.
11.(2018·常德中考)如圖,已知⊙O是等邊三角形ABC的外接圓,點(diǎn)D在圓上,在CD的延長線上有一點(diǎn)F,使DF=DA,AE∥BC交CF于點(diǎn)E.
(1)求證:EA是⊙O的切線;
(2)求證:BD=CF.
5、
12.(2018·重慶中考B卷)如圖,△ABC中,∠A=30°,點(diǎn)O是邊AB上一點(diǎn),以點(diǎn)O為圓心,以O(shè)B為半徑作圓,⊙O恰好與AC相切于點(diǎn)D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( )
A.2 B. C. D.
13.(2018·無錫中考)如圖,矩形ABCD中,G是BC的中點(diǎn),過A,D,G三點(diǎn)的⊙O與邊AB,CD分別交于點(diǎn)E,點(diǎn)F,給出下列說法:(1)AC與BD的交點(diǎn)是⊙O的圓心;(2)AF與DE的交點(diǎn)是⊙O的圓心;(3)BC與⊙O相切.其中正確說法的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
6、14.(2018·瀘州中考)在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線y=x+2上運(yùn)動(dòng),過點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為( )
A.3 B.2 C. D.
15.(2018·南京中考)如圖,在矩形ABCD中,AB=5,BC=4,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長為________.
16.(2019·原創(chuàng)題)如圖所示,在Rt△ABC中,以斜邊AB為直徑作⊙O,延長BC至點(diǎn)D,恰好使得AD=AB,過點(diǎn)C作CE⊥AD,延長
7、DA交⊙O于點(diǎn)F.
(1)求證:CE是⊙O的切線;
(2)若AB=10,CE+EA=4,求AF的長度.
17.(2018·宜賓中考)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),D為BC延長線上一點(diǎn),且BC=CD,CE⊥AD于點(diǎn)E.
(1)求證:EC為⊙O的切線;
(2)設(shè)BE與⊙O交于點(diǎn)F,AF的延長線與CE交于點(diǎn)P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
18.(2019·創(chuàng)新題)閱讀材料:
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距
8、離公式為d=.
例如:求點(diǎn)P0(0,0)到直線4x+3y-3=0的距離.
解:由直線4x+3y-3=0知,A=4,B=3,C=-3,
∴點(diǎn)P0(0,0)到直線4x+3y-3=0的距離為d==.
根據(jù)以上材料,解決下列問題:
問題1:點(diǎn)P1(3,4)到直線y=-x+的距離為__________;
問題2:已知⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=-x+b相切,求實(shí)數(shù)b的值;
問題3:如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出S△ABP的最大值和最小值.
9、
參考答案
【基礎(chǔ)訓(xùn)練】
1.B 2.B 3.C 4.D 5.A
6.26 7.44° 8.70° 9.1
10.
(1)證明:如圖,連接OC.
∵EF是過點(diǎn)C的⊙O的切線,
∴OC⊥EF,
∴∠OCA+∠ACD=90°.
∵OC=OA,
∴∠OCA=∠BAC=∠CAD,
∴∠CAD+∠ACD=90°,
∴AD⊥EF.
(2)解:∵OB=OC,∴∠B=∠OCB=30°.
又∵∠AOC是△BOC的外角,
∴∠AOC=∠B+∠OCB=60°.
又∵OA=OC,
∴△AOC為等邊三角形,∴AC=AB=6.
又∵∠ACD=30°,∴A
10、D=AC,
∴AD=3.
11.證明:(1)如圖,連接OA.
∵⊙O是等邊三角形ABC的外接圓,
∴∠OAC=30°,
∠BCA=60°.
∵AE∥BC,
∴∠EAC=∠BCA=60°,
∴∠OAE=∠OAC+∠EAC=30°+60°=90°,
∴EA是⊙O的切線.
(2)∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ABC=60°.
∵A,B,C,D四點(diǎn)共圓,∴∠ADF=∠ABC=60°.
∵AD=DF,∴△ADF是等邊三角形,
∴AD=AF,∠DAF=60°,
∴∠BAC+∠CAD=∠DAF+∠CAD,
即∠BAD=∠CAF.
在△BAD和△CA
11、F中,
∵
∴△BAD≌△CAF,∴BD=CF.
【拔高訓(xùn)練】
12.B 13.C 14.D
15.4
16.(1)證明:∵OB=OC,∴∠ABC=∠OCB.
∵AB=AD,∴∠ABC=∠ADB,
∴∠OCB=∠ADB,∴OC∥AD.
∵CE⊥AD,∴∠AEC=∠OCE=90°,
∴CE是⊙O的切線.
(2)解:如圖,過點(diǎn)O作OH⊥AF于點(diǎn)H,
則∠OCE=∠CEH=∠OHE=90°,
∴四邊形OCEH是矩形,
∴OC=EH,OH=CE.
設(shè)AH=x.
∵CE+AE=4,OC=5,
∴AE=5-x,OH=4-(5-x)=x-1.
在Rt△AOH中,由勾
12、股定理得AH2+OH2=OA2,即x2+(x-1)2=52,
解得x1=4,x2=-3(不合題意,舍去),
∴AH=4.
∵OH⊥AF,∴AH=FH=AF,
∴AF=2AH=2×4=8.
17.(1)證明:∵CE⊥AD,∴∠DEC=90°.
∵BC=CD,∴點(diǎn)C是BD的中點(diǎn).
又∵點(diǎn)O是AB的中點(diǎn),
∴OC是△BDA的中位線,∴OC∥AD,
∴∠OCE=∠CED=90°,∴OC⊥CE.
又∵點(diǎn)C在圓上,∴EC為⊙O的切線.
(2)解:如圖,連接AC.
∵AB是直徑,點(diǎn)F在⊙O上,
∴∠AFB=∠PFE=∠CEA=90°.
∵∠EPF=∠EPA,∴△PEF∽△PA
13、E,
∴PE2=PF·PA.
∵∠FBC=∠PCF=∠CAF,
又∵∠CPF=∠CPA,∴△PCF∽△PAC,
∴PC2=PF·PA,∴PE=PC.
在Rt△PEF中,sin∠PEF==.
【培優(yōu)訓(xùn)練】
18.解:問題1:4
提示:直線方程整理得3x+4y-5=0,
故A=3,B=4,C=-5,
∴點(diǎn)P1(3,4)到直線y=-x+的距離為
d==4.
問題2:直線y=-x+b整理得3x+4y-4b=0,
故A=3,B=4,C=-4b.
∵⊙C與直線相切,∴點(diǎn)C到直線的距離等于半徑,
即=1,
整理得|10-4b|=5,解得b=或b=.
問題3:如圖,過點(diǎn)C作CD⊥AB于點(diǎn)D.
∵在3x+4y+5=0中,A=3,B=4,C=5,
∴圓心C(2,1)到直線AB的距離
CD==3,
∴⊙C上的點(diǎn)到直線AB的最大距離為3+1=4,最小距離為3-1=2,
∴S△ABP的最大值為×2×4=4,
最小值為×2×2=2.
10