2、納為“杠桿原理”,即:阻力×阻力臂=動(dòng)力×動(dòng)力臂.小偉欲用撬棍撬動(dòng)一塊大石頭,已知阻力和阻力臂分別是1200N和0.5m,則動(dòng)力F(單位:N)關(guān)于動(dòng)力臂l(單位:m)的函數(shù)解析式正確的是 ( )
A.F=1200l B.F=600l
C.F=500l D.F=0.5l
4.[2019·合肥長(zhǎng)豐二模]在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m(m≠0)與y=mx(m≠0)的圖象可能是 ( )
圖K11-1
5.[2019·河北] 如圖K11-2,函數(shù)y=1x(x>0),-1x(x<0)的圖象所在坐標(biāo)系的原點(diǎn)是 ( )
圖K11-2
A.點(diǎn)
3、M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q
6.[2019·馬鞍山二模]如圖K11-3,點(diǎn)A是反比例函數(shù)y=kx圖象上一點(diǎn),過(guò)點(diǎn)A作x軸的平行線交反比例函數(shù)y=-3x的圖象于點(diǎn)B,點(diǎn)C在x軸上,且S△ABC=32,則k= ( )
圖K11-3
A.6 B.-6
C.92 D.-92
7.[2019·合肥二模]如圖K11-4,直線y=13x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)D在x軸的正半軸上,OD=OA,過(guò)點(diǎn)D作CD⊥x軸交直線AB于點(diǎn)C,若反比例函數(shù)y=kx(k≠0)的圖象經(jīng)過(guò)點(diǎn)C,則k的值為 .?
圖K11-4
4、8.[2019·北京] 在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,b)(a>0,b>0)在雙曲線y=k1x上.點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B在雙曲線y=k2x上,則k1+k2的值為 .?
9.[2019·桂林]如圖K11-5,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx(x>0)的圖象和△ABC都在第一象限內(nèi),AB=AC=52,BC∥x軸,且BC=4,點(diǎn)A的坐標(biāo)為(3,5),若將△ABC向下平移m個(gè)單位長(zhǎng)度,A,C兩點(diǎn)同時(shí)落在反比例函數(shù)圖象上,則k的值為 .?
圖K11-5
10.[2019·合肥瑤海區(qū)一模]如圖K11-6,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+1的圖象與反比例函數(shù)圖
5、象交于點(diǎn)A和點(diǎn)B,兩個(gè)點(diǎn)的橫坐標(biāo)分別為2,-3.
(1)求反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫(xiě)出點(diǎn)P的坐標(biāo).
圖K11-6
11.某中學(xué)組織學(xué)生參加社會(huì)實(shí)踐活動(dòng),他們參與了某種品牌運(yùn)動(dòng)鞋的銷(xiāo)售工作,已知該運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)為120元,為尋求合適的銷(xiāo)售價(jià)格進(jìn)行了4天的試銷(xiāo),試銷(xiāo)情況如下表所示:
第1天
第2天
第3天
第4天
售價(jià)x(元/雙)
150
200
250
300
銷(xiāo)售量y(雙)
40
30
24
20
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請(qǐng)求出這個(gè)函數(shù)關(guān)系式.
6、(2)若商場(chǎng)計(jì)劃每天的銷(xiāo)售利潤(rùn)為3000元,則其售價(jià)定為多少元/雙?
12.[2019·常德] 如圖K11-7,一次函數(shù)y=-x+3的圖象與反比例函數(shù)y=kx(k≠0)在第一象限的圖象交于A(1,a)和B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△APC的面積為5,求點(diǎn)P的坐標(biāo).
圖K11-7
|拓展提升|
13.[2019·婁底]將y=1x的圖象向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度所得圖象如圖K11-8所示,則所得圖象的解析式為 ( )
圖K11-8
A.
7、y=1x+1+1 B.y=1x+1-1
C.y=1x-1+1 D.y=1x-1-1
14.[2019·合肥蜀山區(qū)九年級(jí)下學(xué)期第一次質(zhì)量調(diào)研]如圖K11-9,點(diǎn)B在反比例函數(shù)y=2x(x>0)的圖象上,過(guò)點(diǎn)B分別作x軸和y軸的垂線,垂足分別是C0和A,點(diǎn)C0的坐標(biāo)為(1,0),取x軸上一點(diǎn)C132,0,過(guò)點(diǎn)C1作x軸的垂線交反比例函數(shù)圖象于點(diǎn)B1,過(guò)點(diǎn)B1作B1A1⊥BC0交BC0于點(diǎn)A1,得到矩形A1B1C1C0,依次在x軸上取點(diǎn)C2(2,0),C352,0,…,按此規(guī)律作矩形,則矩形AnBnCnCn-1(n為正整數(shù))的面積為 .?
圖K11-9
8、
【參考答案】
1.A
2.C [解析]當(dāng)x=-1,2,3時(shí),y1=-6,y2=3,y3=2.故可判斷出y10,則一次函數(shù)圖象經(jīng)過(guò)第一、二、三象限,所以B選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.
5.A [解析]∵函
9、數(shù)y=1x(x>0)與y=-1x(x<0)的圖象關(guān)于y軸對(duì)稱(chēng),∴直線MP是y軸所在直線,
∵兩支曲線分別位于一、二象限,
∴直線MN是x軸所在直線,
∴坐標(biāo)原點(diǎn)為M.
6.B [解析]如圖,延長(zhǎng)AB,與y軸交于點(diǎn)D,連接OA,OB.
∵AB∥x軸,∴AD⊥y軸,
∵點(diǎn)A是反比例函數(shù)y=kx圖象上一點(diǎn),點(diǎn)B是反比例函數(shù)y=-3x圖象上的點(diǎn),
∴S△AOD=-12k,S△BOD=32,
∵S△AOB=S△ABC=32,∴-12k-32=32,解得k=-6,故選B.
7.24 [解析]令x=0,得y=2,∴B(0,2),
∴OB=2,
令y=0,得0=13x+2,解得x=-
10、6,∴A(-6,0),∴OA=OD=6.
∵OB∥CD,∴CD=2OB=4,∴C(6,4),把C(6,4)代入y=kx中,得k=24,故答案為:24.
8.0
9.454 [解析]∵AB=AC=52,BC=4,點(diǎn)A(3,5),∴B1,72,C5,72,
將△ABC向下平移m個(gè)單位長(zhǎng)度,得平移后A(3,5-m),C5,72-m,
∵平移后A,C兩點(diǎn)同時(shí)落在反比例函數(shù)圖象上,
∴3(5-m)=572-m,
∴m=54,∴平移后A3,154,∴k=3×154=454.故答案為454.
10.解:(1)∵y=x+1,點(diǎn)A和點(diǎn)B的橫坐標(biāo)分別為2,-3,
∴A(2,3),B(-3,-2)
11、,
∴反比例函數(shù)的解析式為y=6x.
(2)∵y=x+1,∴C(0,1),
∵△PAB的面積等于5,∴12PC·2+12PC·3=5,解得:PC=2,
∴點(diǎn)P的坐標(biāo)是(0,3)或(0,-1).
11.解:(1)由表中數(shù)據(jù)可得xy=6000,所以y是x的反比例函數(shù),其函數(shù)關(guān)系式為y=6000x.
(2)由題意得(x-120)y=3000,
將y=6000x代入,得(x-120)·6000x=3000,
解得x=240.經(jīng)檢驗(yàn)x=240是原方程的解且符合實(shí)際.
答:若商場(chǎng)計(jì)劃每天的銷(xiāo)售利潤(rùn)為3000元,則其售價(jià)定為240元/雙.
12.解:(1)∵A(1,a)在y=-x+3
12、的圖象上,
∴a=-1+3=2,
把A(1,2)代入y=kx中,得k=2,
∴反比例函數(shù)解析式為y=2x.
(2)∵點(diǎn)P在x軸上,∴設(shè)P(m,0),
∵S△APC=12PC×2,∴5=12PC×2,∴PC=5.
∵y=-x+3,當(dāng)y=0時(shí),x=3,∴C(3,0),
∴m-3=5或3-m=5,即m=8或-2,
∴點(diǎn)P的坐標(biāo)為(8,0)或(-2,0).
13.C [解析]二次函數(shù)圖象的平移規(guī)律“左加右減,上加下減”對(duì)所有函數(shù)的圖象平移均適合.
∵將y=1x的圖象向右平移1個(gè)單位長(zhǎng)度后所得函數(shù)關(guān)系式為y=1x-1,∴將y=1x的圖象向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度所得圖象的解析式為y=1x-1+1.故選C.
14.2n+2
8