《函數的極值與導數》教學設計.doc
《《函數的極值與導數》教學設計.doc》由會員分享,可在線閱讀,更多相關《《函數的極值與導數》教學設計.doc(5頁珍藏版)》請在裝配圖網上搜索。
3.3.2 函數的極值與導數 教學設計 一、教學目標 1 知識與技能 〈1〉結合函數圖象,了解可導函數在某點取得極值的必要條件和充分條件 〈2〉理解函數極值的概念,會用導數求函數的極大值與極小值 2 過程與方法 結合實例,借助函數圖形直觀感知,并探索函數的極值與導數的關系。 3 情感與價值 感受導數在研究函數性質中一般性和有效性,通過學習讓學生體會極值是函數的局部性質,增強學生數形結合的思維意識。 二、重點:利用導數求函數的極值 難點:函數在某點取得極值的必要條件與充分條件 三、教學基本流程 回憶函數的單調性與導數的關系,與已有知識的聯系 提出問題,激發(fā)求知欲 組織學生自主探索,獲得函數的極值定義 通過例題和練習,深化提高對函數的極值定義的理解 四、教學過程 〈一〉、創(chuàng)設情景,導入新課 1、通過上節(jié)課的學習,導數和函數單調性的關系是什么? (提問學生回答) 2.觀察圖1.3.8 表示高臺跳水運動員的高度h隨時間t變化的函數=-4.9t2+6.5t+10的圖象,回答以下問題 (1)當t=a時,高臺跳水運動員距水面的高度最大,那么函數在t=a處的導數是多少呢? (2)在點t=a附近的圖象有什么特點? (3)點t=a附近的導數符號有什么變化規(guī)律? 共同歸納: 函數h(t)在a點處h/(a)=0,在t=a的附近,當t<a時,函數單調遞增, >0;當t>a時,函數單調遞減, <0,即當t在a的附近從小到大經過a時, 先正后負,且連續(xù)變化,于是h/(a)=0. 3、對于這一事例是這樣,對其他的連續(xù)函數是不是也有這種性質呢? <二>、探索研討 1、觀察1.3.9圖所表示的y=f(x)的圖象,回答以下問題: (1)函數y=f(x)在a.b點的函數值與這些點附近的函數值有什么關系? (2) 函數y=f(x)在a.b.點的導數值是多少? (3)在a.b點附近, y=f(x)的導數的符號分別是什么,并且有什么關系呢? 2、極值的定義: 我們把點a叫做函數y=f(x)的極小值點,f(a)叫做函數y=f(x)的極小值; 點b叫做函數y=f(x)的極大值點,f(a)叫做函數y=f(x)的極大值。 極大值點與極小值點稱為極值點, 極大值與極小值稱為極值. 3、通過以上探索,你能歸納出可導函數在某點x0取得極值的充要條件嗎? 充要條件:f(x0)=0且點x0的左右附近的導數值符號要相反 4、引導學生觀察圖1.3.11,回答以下問題: (1)找出圖中的極點,并說明哪些點為極大值點,哪些點為極小值點? (2)極大值一定大于極小值嗎? 5、隨堂練習: 1 如圖是函數y=f(x)的函數,試找出函數y=f(x)的極值點,并指出哪些是極大值點,哪些是極小值點.如果把函數圖象改為導函數y=的圖象? <三>、講解例題 例4 求函數的極值 教師分析:①求f/(x),解出f/(x)=0,找函數極點; ②由函數單調性確定在極點x0附近f/(x)的符號,從而確定哪一點是極大值點,哪一點為極小值點,從而求出函數的極值. 學生動手做,教師引導 解:∵∴=x2-4=(x-2)(x+2) 令=0,解得x=2,或x=-2. 下面分兩種情況討論: (1) 當>0,即x>2,或x<-2時; (2) 當<0,即-2<x<2時. 當x變化時, ,f(x)的變化情況如下表: x (-∞,-2) -2 (-2,2) 2 (2,+∞) + 0 _ 0 + f(x) 單調遞增 單調遞減 單調遞增 因此,當x=-2時,f(x)有極大值,且極大值為f(-2)= ;當x=2時,f(x)有極 小值,且極小值為f(2)= 函數的圖象如: 歸納:求函數y=f(x)極值的方法是: 1求,解方程=0,當=0時: (1) 如果在x0附近的左邊>0,右邊<0,那么f(x0)是極大值. (2) 如果在x0附近的左邊<0,右邊>0,那么f(x0)是極小值 <四>、課堂練習 1、求函數f(x)=3x-x3的極值 2、思考:已知函數f(x)=ax3+bx2-2x在x=-2,x=1處取得極值, 求函數f(x)的解析式及單調區(qū)間。 <五>、課后思考題: 1、 若函數f(x)=x3-3bx+3b在(0,1)內有極小值,求實數b的范圍。 2、 已知f(x)=x3+ax2+(a+b)x+1有極大值和極小值,求實數a的范圍。 <六>、課堂小結: 1、 函數極值的定義 2、 函數極值求解步驟 3、 一個點為函數的極值點的充要條件。 教學反思: 本節(jié)的教學內容是導數的極值,有了上節(jié)課導數的單調性作鋪墊,借助函數圖形的直觀性探索歸納出導數的極值定義,利用定義求函數的極值.教學反饋中主要是書寫格式存在著問題.為了統一要求主張用列表的方式表示,剛開始學生都不愿接受這種格式,但隨著幾道例題與練習題的展示,學生體會到列表方式的簡便,同時為能夠快速判斷導數的正負,我要求學生盡量把導數因式分解.本節(jié)課的難點是函數在某點取得極值的必要條件與充分條件,為了說明這一點多舉幾個例題是很有必要的.在解答過程中學生還暴露出對復雜函數的求導的準確率比較底,以及求函數的極值的過程板書仍不規(guī)范,看樣子這些方面還要不斷加強訓練. 研討評議: 教學內容整體設計合理,重點突出,難點突破,充分體現教師為主導,學生為主體的雙主體課堂地位,充分調動學生的積極性,教師合理清晰的引導思路,使學生的數學思維得到培養(yǎng)和提高,教學內容容量與難度適中,符合學情,并關注學生的個體差異,使不同程度的學生都得到不同效果的收獲.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 函數的極值與導數 函數 極值 導數 教學 設計
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-9983587.html