購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開的,三維預覽圖都是店主用電腦打開后截圖的,具體請見文件預覽,有不明白之處,可咨詢QQ:1304139763===========題目最后備注XX系列,只是店主整理分類,與內容無關,請忽視
外文資料翻譯
The Numerical Control Engine Bed Transforms
Harvey B.M ackey
First numerical control system development summary brief history and tendency
In 1946 the first electronic accounting machine was born in the world, this indicated the humanity created has been possible to strengthen and partially to replace the mental labor the tool. It with the humanity these which in the agriculture, the industry society created only is strengthens the physical labor the tool to compare, got up the quantitive leap, entered the information society for the humanity to lay the foundation.
After 6 years, in 1952, computer technology applied to the engine bed , the first numerical control engine bed were born in US. From this time on, the traditional engine bed has had the archery target change. Since nearly half century, the numerical control system has experienced two stages and six generation of development.
1.1 Numerical control (NC) stage (1952 ~ 1970)
The early computer operating speed is low, was not big to then science computation and the data processing influence, but could not adapt the engine bed real-time control request. The people can not but use numeral logic circuit "to build" to become an engine bed special purpose computer to take the numerical control system, is called the hardware connection numerical control (HARD-WIRED NC), Jian Chengwei numerical control (NC). Along with the primary device development, this stage has had been through repeatedly three generations, namely 1952 first generation of -- electron tube; 1959 second generation of -- transistor; 1965 third generation -- small scale integration electric circuit.
1.2 Computer numerical control (CNC) stage (in 1970 ~ present)
In 1970, the general minicomputer already appeared and the mass production. Thereupon transplants it takes the numerical control system the core part, from this time on entered the computer numerical control (CNC) the stage ("which should have computer in front of the general" two characters to abbreviate). In 1971, American INTEL Corporation in the world first time the computer two most cores part -- logic units and the controller, used the large scale integrated circuit technology integration on together the chip, called it the microprocessor (MICROPROCESSOR), also might be called the central processing element (to be called CPU).
The microprocessor is applied to 1974 in the numerical control system. This is because minicomputer function too strong, controlled an engine bed ability to have wealthily (therefore once uses in controlling the multi- Taiwan engine bed at that time, called it group control), was inferior to used the microprocessor economy to be reasonable. Moreover then small machine reliability was not ideal. The early microprocessor speed and the function although insufficiently are also high, but may solve through the multi-processor structure. Because the microprocessor is the general-purpose calculator core part, therefore still was called the computer numerical control.
In 1990, PC machine (personal computer, domestic custom had called microcomputer) the performance has developed to the very high stage, may satisfiedly take the numerical control system core part the request. The numerical control system henceforth entered based on the PC stage.
In brief, the computer numerical control stage has also experienced three generations. Namely 1970 fourth generation of -- minicomputer; 1974 five dynasties -- microprocessor and 1990 sixth generation -- (overseas was called PC-BASED) based on PC.
Also must point out, although overseas already renamed as the computer numerical control (namely CNC).
Also must point out, although overseas already renamed as the computer numerical control (namely CNC), but our country still the custom called the numerical control (NC). Therefore we daily say "numerical control", the materially already was refers to "computer numerical control".
1.3 the numerical control future will develop tendency
1.3.1 open style continues to, to develop based on the PC sixth generation of direction
The software and hardware resources has which based on PC are rich and so on the characteristic, the more numerical controls serial production factory can step onto this path. Uses PC machine to take at least its front end machine, processes the man-machine contact surface, the programming, the association
Question and so on net correspondence, undertakes the numerical control duty by the original system. PC machine has the friendly man-machine contact surface, will popularize to all numerical controls system. The long-distance communication, the long-distance diagnosis and the service will be more common.
1.3.2 approaches and the high accuracy development
This is adapts the engine bed to be high speed and the high accuracy direction need to develop.
1.3.3 develops to the intellectualized direction
Along with the artificial intelligence in the computer domain unceasing seepage and the development, the numerical control system intellectualized degree unceasingly will enhance.
(1) applies the adaptive control technology
The numerical control system can examine in the process some important information, and the automatic control system related parameter, achieves the improvement system running status the goal.
(2) introduces the expert system instruction processing
The skilled worker and expert's experience, the processing general rule and the special rule store in the system, take the craft parameter database as the strut, the establishment has the artificial intelligence the expert system.
(3) introduces the breakdown to diagnose the expert system
(4) intellectualized numeral servo drive
May through the automatic diagnosis load, but the automatic control parameter, causes the actuation system to obtain the best movement.
Second, engine bed numerical control transformation necessity
2.1 microscopic looks at the transformation the necessity
From on microscopic looked below that, the numerical control engine bed has the prominent superiority compared to the traditional engine bed, moreover these superiority come from the computer might which the numerical control system contains.
2.1.1 may process the traditional engine bed cannot process the curve, the curved surface and so on the complex components.
Because the computer has the excellent operation ability, may the instant accurately calculate each coordinate axis instant to be supposed the movement physiological load of exercise, therefore may turn round the synthesis complex curve or the curved surface.
2.1.2 may realize the processing automation, moreover is the flexible automation, thus the efficiency may enhance 3 ~ 7 times compared to the traditional engine bed.
Because the computer has the memory and the memory property, may the procedure which inputs remember and save, then the order which stipulated according to the procedure automatic carries out, thus realization automation. The numerical control engine bed so long as replaces a procedure, may realize another work piece processing automation, thus causes the single unit and the small batch of production can automate, therefore is called has realized "flexible automation".
2.1.3 processings components precision high, size dispersion degree small, makes the assembly to be easy, no longer needs "to make repairs".
2.1.4 may realize the multi- working procedures centralism, reduces the components in engine bed between frequent transporting.
2.1.5 has auto-alarm, the automatic monitoring, automatic compensation and so on the many kinds of autonomy function, thus may realize long time nobody to safeguard the processing.
2.1.6 advantage which derives by above five.
For example: Reduced worker's labor intensity, saved the labor force (a person to be possible to safeguard the multi- Taiwan engine bed), reduced the work clothes, reduced the new product trial manufacturing cycle and the production cycle, might to the market demand make rapid reaction and so on.
Above these superiority are the predecessor cannot imagine, is an extremely significant breakthrough. In addition, the engine bed numerical control carries out FMC (flexible manufacture unit), FMS (flexible manufacture system) as well as CIMS (computer integration manufacture system) and so on the enterprise becoming an information based society transformation foundation. The numerical control technology already became the manufacturing industry automation the core technology and the foundation technology.
2.2 great watches the transformation the necessity
From on macroscopic looked that, the industry developed country armed forces, the airplane weapon industry, in the end of the 70's, at the beginning of the 80's started the large-scale application numerical control engine bed. Its essence is, uses the information technology to the traditional industry (including the armed forces, airplane weapon industry) carries on the technological transformations. Except that uses outside the numerical control engine bed, FMC, FMS in the manufacture process, but also includes in the product development carries out CAD, CAE, CAM, the hypothesized manufacture as well as carries out MIS in the production management (management information system), CIMS and so on. As well as increases the information technology in its production product, including artificial intelligence and so on content. Because uses the information technology to the country foreign troops, the airplane weapon industry carries on the thorough transformation (to call it becoming an information based society), finally causes them the product in the international military goods and in the goods for civilian use market the competitive power greatly is the enhancement. But we in the information technology transformation tradition industry aspect compared to the developed country to fall behind approximately for 20 years. Like in our country engine bed capacity, numerical control engine bed proportion (numerical control rate) to 1995 only then 1.9%, but Japan has reached 20.8% in 1994, therefore every year has the massive mechanical and electrical products import. This also on from on macroscopic explained the engine bed numerical control transformation necessity.
Thord, the numerical control transformation content and superiorly lacks
3.1 Transformation industry starting
In US, Japan and Germany and so on the developed country, their engine bed transforms took the new economical growth profession, thrives abundantly, is occupying the golden age. As a result of the engine bed as well as the technical unceasing progress, the engine bed transformation is "the eternal" topic. Our country's engine bed transformation industry, also enters from the old profession to by the numerical control technology primarily new profession. In US, Japan, Germany, have the broad market with the numerical control technological transformations engine bed and the production line, has formed the engine bed and the production line numerical control transformation new profession. In US, the engine bed transformation industry is called the engine bed regeneration (Remanufacturing) industry. Is engaged in the regeneration industry famous company to include: The Bertsche engineering firm, the ayton engine bed company, Devlieg-Bullavd (are valuable) serves the group, the US equipment company and so on. The American valuable company has set up the company in China. In Japan, the engine bed transformation industry is called the engine bed to reequip (Retrofitting) industry. Is engaged in the reequipment industry famous company to include: Big indentation project group, hillock three mechanical companies, thousand substitute fields labor machine company, wild engineering firm, shore field engineering firm, mountain this engineering firm and so on.
3.2 Numerical control transformation content
The engine bed and the production line numerical control transformation main content has following several points:
First is extensively recovers the function, to the engine bed, the production line has the breakdown partially to carry on the diagnosis and the restoration;
Second is NC, the addend reveals the installment on the ordinary engine bed, or adds the numerical control system, transforms the NC engine bed, the CNC engine bed;
Third is renovates, for increases the precision, the efficiency and the automaticity, to the machinery, the electricity partially carries on renovates, reassembles the processing to the machine part, extensively recovers the precision; Does not satisfy the production request to it the CNC system to carry on the renewal by newest CNC;
Fourth is the technology renews or the technical innovation, for enhances the performance or the scale, or in order to use the new craft, the new technology, carries on the big scale in the original foundation the technology to renew or the technical innovation, the great scope raises the level and the scale renewal transformation. The new electrical system transforms after, how carries on the debugging as well as the determination reasonable approval standard, also is the technology preparatory work important link. The debugging work involves the machinery, the hydraulic pressure, the electricity, the control, and so on, therefore must carry on by the project person in charge, other personnel coordinate. The debugging step may conform to simplicity to numerous, from infancy to maturity, carries on from outside to in, after also may the partial overall situation, after first the subsystem the
3.3 The numerical control transformation superiorly lacks
3.3.1 reduced investment costs, the date of delivery are short
With purchases the new engine bed to compare, may save 60% ~ 80% expense generally, the transformation expense is low. Large-scale, the special engine bed especially is specially obvious. The common large-scale engine bed transforms, only spends the new engine bed purchase expense 1/3, the date of delivery is short. But some peculiar circumstances, like the high speed main axle, the tray automatic switching unit manufacture and the installment too requires a lot of work, costs a great deal of money, often transforms the cost to enhance 2 ~ 3 times, with purchases the new engine bed to compare, only can economical invest about 50%.
3.3.2 machine capability stable are reliable, the structure is limited
Uses foundation and so on lathe bed, column all is heavy but the firm casting component, but is not that kind of welding component, after the transformation engine bed performance high, the quality is good, may take the new equipment continues to use many years. But receives the original mechanism the limit, not suitably makes the unprecedented transformation.
3.3.3 familiar understood the equipment, is advantageous for the operation service
When purchases the new equipment, did not understand whether the new equipment can satisfy its processing request. The transformation then otherwise, may precisely calculate the engine bed the processing ability; Moreover, because many years use, the operator already understood to the engine bed characteristic, uses and services the aspect to train the time in the operation short, effective is quick. The transformation engine bed as soon as installs, may realize the capacity load revolution.
3.3.4 may fully use the existing condition
May fully use the existing ground, does not need to like buys when the new equipment such to have reto construct the ground.
3.3.5 may use the newest control technology
enhances the production equipment the automated level and the efficiency, improves the equipment quality and the scale, alters to the old engine bed now the horizontal engine bed.
數控機床
1 數控系統(tǒng)發(fā)展簡史及趨勢
1946年誕生了世界上第一臺電子計算機,這表明人類創(chuàng)造了可增強和部分代替腦力勞動的工具。它與人類在農業(yè)、工業(yè)社會中創(chuàng)造的那些只是增強體力勞動的工具相比,起了質的飛躍,為人類進入信息社會奠定了基礎。
6年后,即在1952年,計算機技術應用到了機床上,在美國誕生了第一臺數控機床。從此,傳統(tǒng)機床產生了質的變化。近半個世紀以來,數控系統(tǒng)經歷了兩個階段和六代的發(fā)展。
1.1 數控(NC)階段(1952~1970年)
早期計算機的運算速度低,對當時的科學計算和數據處理影響還不大,但不能適應機床實時控制的要求。人們不得不采用數字邏輯電路"搭"成一臺機床專用計算機作為數控系統(tǒng),被稱為硬件連接數控(HARD-WIRED NC),簡稱為數控(NC)。隨著元器件的發(fā)展,這個階段歷經了三代,即1952年的第一代--電子管;1959年的第二代--晶體管;1965年的第三代--小規(guī)模集成電路。
1.2 計算機數控(CNC)階段(1970年~現在)
到1970年,通用小型計算機業(yè)已出現并成批生產。于是將它移植過來作為數控系統(tǒng)的核心部件,從此進入了計算機數控(CNC)階段(把計算機前面應有的"通用"兩個字省略了)。到1971年,美國INTEL公司在世界上第一次將計算機的兩個最核心的部件--運算器和控制器,采用大規(guī)模集成電路技術集成在一塊芯片上,稱之為微處理器(MICROPROCESSOR),又可稱為中央處理單元(簡稱CPU)。
到1974年微處理器被應用于數控系統(tǒng)。這是因為小型計算機功能太強,控制一臺機床能力有富裕(故當時曾用于控制多臺機床,稱之為群控),不如采用微處理器經濟合理。而且當時的小型機可靠性也不理想。早期的微處理器速度和功能雖還不夠高,但可以通過多處理器結構來解決。由于微處理器是通用計算機的核心部件,故仍稱為計算機數控。
到了1990年,PC機的性能已發(fā)展到很高的階段,可以滿足作為數控系統(tǒng)核心部件的要求。數控系統(tǒng)從此進入了基于PC的階段。
總之,計算機數控階段也經歷了三代。即1970年的第四代--小型計算機;1974年的第五代--微處理器和1990年的第六代--基于PC(也就是為PC-BASED)。
1.3 數控未來發(fā)展的趨勢
1.3.1 繼續(xù)向開放式、基于PC的第六代方向發(fā)展
基于PC所具有的開放性、低成本、高可靠性、軟硬件資源豐富等特點,更多的數控系統(tǒng)生產廠家會走上這條道路。至少采用PC機作為它的前端機,來處理人機界面、編程、聯網通信等問題,由原有的系統(tǒng)承擔數控的任務。PC機所具有的友好的人機界面,將普及到所有的數控系統(tǒng)。遠程通訊,遠程診斷和維修將更加普遍。
1.3.2 向高速化和高精度化發(fā)展
這是適應機床向高速和高精度方向發(fā)展的需要。
1.3.3 向智能化方向發(fā)展
隨著人工智能在計算機領域的不斷滲透和發(fā)展,數控系統(tǒng)的智能化程度將不斷提高。
(1)應用自適應控制技術
數控系統(tǒng)能檢測過程中一些重要信息,并自動調整系統(tǒng)的有關參數,達到改進系統(tǒng)運行狀態(tài)的目的。
?。?)引入專家系統(tǒng)指導加工
將熟練工人和專家的經驗,加工的一般規(guī)律和特殊規(guī)律存入系統(tǒng)中,以工藝參數數據庫為支撐,建立具有人工智能的專家系統(tǒng)。
(3)引入故障診斷專家系統(tǒng)
?。?)智能化數字伺服驅動裝置
可以通過自動識別負載,而自動調整參數,使驅動系統(tǒng)獲得最佳的運行。
2 機床數控化改造的必要性
2.1 微觀看改造的必要性
從微觀上看,數控機床比傳統(tǒng)機床有以下突出的優(yōu)越性,而且這些優(yōu)越性均來自數控系統(tǒng)所包含的計算機的威力。
2.1.1 可以加工出傳統(tǒng)機床加工不出來的曲線、曲面等復雜的零件。
由于計算機有高超的運算能力,可以瞬時準確地計算出每個坐標軸瞬時應該運動的運動量,因此可以復合成復雜的曲線或曲面。
2.1.2 可以實現加工的自動化,而且是柔性自動化,從而效率可比傳統(tǒng)機床提高3~7倍。
由于計算機有記憶和存儲能力,可以將輸入的程序記住和存儲下來,然后按程序規(guī)定的順序自動去執(zhí)行,從而實現自動化。數控機床只要更換一個程序,就可實現另一工件加工的自動化,從而使單件和小批生產得以自動化,故被稱為實現了"柔性自動化"。
2.1.3 加工零件的精度高,尺寸分散度小,使裝配容易,不再需要"修配"。
2.1.4 可實現多工序的集中,減少零件 在機床間的頻繁搬運。
2.1.5 擁有自動報警、自動監(jiān)控、自動補償等多種自律功能,因而可實現長時間無人看管加工。
2.1.6 由以上五條派生的好處。
如:降低了工人的勞動強度,節(jié)省了勞動力(一個人可以看管多臺機床),減少了工裝,縮短了新產品試制周期和生產周期,可對市場需求作出快速反應等等。
以上這些優(yōu)越性是前人想象不到的,是一個極為重大的突破。此外,機床數控化還是推行FMC(柔性制造單元)、FMS(柔性制造系統(tǒng))以及CIMS(計算機集成制造系統(tǒng))等企業(yè)信息化改造的基礎。數控技術已經成為制造業(yè)自動化的核心技術和基礎技術。
2.2 宏觀看改造的必要性
從宏觀上看,工業(yè)發(fā)達國家的軍、民機械工業(yè),在70年代末、80年代初已開始大規(guī)模應用數控機床。其本質是,采用信息技術對傳統(tǒng)產業(yè)(包括軍、民機械工業(yè))進行技術改造。除在制造過程中采用數控機床、FMC、FMS外,還包括在產品開發(fā)中推行CAD、CAE、CAM、虛擬制造以及在生產管理中推行MIS(管理信息系統(tǒng))、CIMS等等。以及在其生產的產品中增加信息技術,包括人工智能等的含量。由于采用信息技術對國外軍、民機械工業(yè)進行深入改造(稱之為信息化),最終使得他們的產品在國際軍品和民品的市場上競爭力大為增強。
3 數控化改造的內容及優(yōu)缺
3.1 數控改造業(yè)的興起
在美國、日本和德國等國家,機床改造作為新的經濟增長行業(yè),生意盎然,正處在黃金時代。由于機床以及技術的不斷進步,機床改造是個"永恒"的課題。在美國、日本、德國,用數控技術改造機床和生產線具有廣闊的市場,已形成了機床和生產線數控改造的新的行業(yè)。在美國,機床改造業(yè)稱為機床再生(Remanufacturing)業(yè)。從事再生業(yè)的著名公司有:Bertsche工程公司、ayton機床公司、Devlieg-Bullavd(得寶)服務集團、US設備公司等。。在日本,機床改造業(yè)稱為機床改裝(Retrofitting)業(yè)。從事改裝業(yè)的著名公司有:大隈工程集團、崗三機械公司、千代田工機公司、野崎工程公司、濱田工程公司、山本工程公司等。
3.2、數控化改造的內容
機床與生產線的數控化改造主要內容有以下幾點:
其一是恢復原功能,對機床、生產線存在的故障部分進行診斷并恢復;
其二是NC化,在普通機床上加數顯裝置,或加數控系統(tǒng),改造成NC機床、CNC機床;
其三是翻新,為提高精度、效率和自動化程度,對機械、電氣部分進行翻新,對機械部分重新裝配加工,恢復原精度;對其不滿足生產要求的CNC系統(tǒng)以最新CNC進行更新;
其四是技術更新或技術創(chuàng)新,為提高性能或檔次,或為了使用新工藝、新技術,在原有基礎上進行較大規(guī)模的技術更新或技術創(chuàng)新,較大幅度地提高水平和檔次的更新改造。
3.3、數控化改造的優(yōu)缺
3.3.1 減少投資額、交貨期短
同購置新機床相比,一般可以節(jié)省60%~80%的費用,改造費用低。特別是大型、特殊機床尤其明顯。一般大型機床改造,只花新機床購置費用的1/3,交貨期短。但有些特殊情況,如高速主軸、托盤自動交換裝置的制作與安裝過于費工、費錢,往往改造成本提高2~3倍,與購置新機床相比,只能節(jié)省投資50%左右。
3.3.2 機械性能穩(wěn)定可靠,結構受限
所利用的床身、立柱等基礎件都是重而堅固的鑄造構件,而不是那種焊接構件,改造后的機床性能高、質量好,可以作為新設備繼續(xù)使用多年。但是受到原來機械結構的限制,不宜做突破性的改造。
3.3.3 熟悉了解設備、便于操作維修
購買新設備時,不了解新設備是否能滿足其加工要求。改造則不然,可以精確地計算出機床的加工能力;另外,由于多年使用,操作者對機床的特性早已了解,在操作使用和維修方面培訓時間短,見效快。改造的機床一安裝好,就可以實現全負荷運轉。
3.3.4 可充分利用現有的條件
可以充分利用現有地基,不必像購入新設備時那樣需重新構筑地基。
3.3.5 可以采用最新的控制技術
可根據技術革新的發(fā)展速度,及時地提高生產設備的自動化水平和效率,提高設備質量和檔次,將舊機床改成當今水平的機床。
精度主要決定于步進電機的角位移精度,齒輪絲杠等傳動元件的節(jié)距精度,所以系統(tǒng)的位移精度較低。
該系統(tǒng)結構簡單,調試維修方便,工作可靠,成本低,易改裝成功。
第12頁