購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
一個具有新的傳熱特性的螺旋翅片管換熱器
摘要 在本研究中,熱傳遞特性在干燥的表面上的一個新的在不同的熱條件下?lián)Q熱器器,即一個螺旋翅片管換熱器器。實驗研究,SHI實驗段,這是一個螺旋處以管式的換熱器,由一個外殼和一個螺旋線圈單元。螺旋線圈單元由四個同心螺旋盤繞管不同的直徑組成,每一個通過彎曲管構(gòu)成成螺旋線圈的直銅管。鋁壓接螺旋翅片厚度為0.5mm,外徑管周長28.25毫米。在鰭的邊緣內(nèi)徑波紋。周圍的空氣被用作而熱水用于工作流體在殼側(cè)管側(cè),完成測試運行的空氣質(zhì)量流率介于0.04和0.13千克/秒。水流量率范圍是??0.2%和0.4千克/秒。是在40℃和50℃之間的水溫條件的影響兩個工作流體流過的熱熱交換器的傳熱系數(shù)進行的研究。在長期的空氣的傳熱系數(shù)考爾j數(shù)目成正比于入口水溫和水的質(zhì)量流率。該熱交換器為提高水的質(zhì)量流量往往會增加流速,也稍微增加而增加入口水的溫度。
標志目錄
A 區(qū)域()
Cp 比熱[kJ/(公斤K)]
D 管直徑(m)
D 曲度的直徑(m)
Dc 卷的直徑(m)
f 摩擦因子
F 修正系數(shù)
G 量流量[公斤(m2 s)]
H 傳熱系數(shù)[與(m2 K)]
I 焓(kJ/kg)
Io 修改過的貝賽爾第一種類的作用解答,定義 第一種類的0種
I1 修改過的貝賽爾作用解答,定義 第二種類的1種
J Colburn j因素Ko修改過的貝賽爾作用解答,定義 第二種類的0種
K1 修改過的貝賽爾作用解答,定義 第二種類的1種
K 導(dǎo)熱性[與(m K)]
L 管長度(m)
M 質(zhì)量流率(kg/s)螺線卷(m)
Pr Prandtl數(shù)字
Q 熱傳遞率(w)
R 管的半徑(m)
Nu Nusselt
數(shù)字P 瀝青關(guān)于雷諾數(shù)
T 溫度( C)
U 總傳熱系數(shù)[與(m2 K)]
V 平均速度(m/s)
D 厚度(m)
G 飛翅有效率是整體表面有效率
L 動力粘度(Pa s)
q 密度(kg/m3)
e 有效率
Subscripts
a 空氣
ave 平均
b 基本的
c 螺線卷
f 飛翅
I 里面
In 在入口
l 平均溫差
LM 日志平均溫差
Max 最大值
min 極小值
o 外部
out 出口
wall 墻壁表面
t T形管
tot 共計
w 水
1 介紹
由于高溫傳遞系數(shù)和更小的空間需要在幾種熱傳遞應(yīng)用和平直的管相比,彎曲的管是最用途廣泛的管。一支螺線卷起的管是用于產(chǎn)業(yè)品種的其中一個彎曲管的知名最廣的類型。對螺線卷起的管的分析和實驗性地學(xué)習與應(yīng)用如Dravid等。[1]在層流熱傳遞數(shù)字上調(diào)查了次要流程的作用在螺旋管在充分廣闊的區(qū)域和在熱量入口區(qū)域,被預(yù)言的結(jié)果是在他們重疊的范圍確認了從實驗獲得的那些重要參數(shù)如 Patankar等。 [2]在開放在摩擦因子和熱傳遞認識到其數(shù)字和螺管的發(fā)展中的作用。從實驗獲得的溫度為軸向地一致的熱流事例以演算得到的一個等溫模型。在以上提到的模型,扭力的作用和Prandtl數(shù)字未被考慮到。如楊和Ebadian等[3]在一個短的圓剖面螺旋管以k-e模型分析充分發(fā)生動蕩對換熱流與有限瀝青面積的關(guān)系。結(jié)果在橫斷面上表示,當卷的瀝青增加了,橫截面內(nèi)的溫度分布是不對稱的。在層流的情況下,增加普朗特數(shù)會減少扭轉(zhuǎn)的了熱傳遞。此外,我們發(fā)現(xiàn)其間距隨著流量的增加,將增強熱流傳熱效果。后來,林和Ebadian [4]采用標準k-E模型研究三維湍流發(fā)展對流換熱螺旋管道有限間距,曲率比和雷諾數(shù)的影響的有效熱導(dǎo)率和溫度場,局部和平均努塞爾數(shù)進行了研究討論。從模型得到的結(jié)果分別為在現(xiàn)有的實驗數(shù)據(jù)吻合良好。如鑫等人[5]實驗研究了單相和二相流的壓降在環(huán)形螺旋管道。郭等人[6]進行實驗研究蒸了汽 - 水的振蕩在一個均勻的二相流螺旋加熱管。研究表明,重力振蕩邊界上有一個小的影響。他們也提出了新的方法來消除壓力下降的振蕩。菊等人[7]彎曲半徑小螺旋盤管。公式推導(dǎo)單相流結(jié)構(gòu)的雷諾數(shù),和獲得了單相和二相流的摩擦系數(shù)。阿里[8]提出的壓降相關(guān)性流體流經(jīng)定期螺旋盤管。廣義壓降中相關(guān)的歐拉數(shù),雷諾數(shù)和幾何組。趙等人[9]研究了壓力降和沸騰傳熱特性??的水蒸汽兩相流在小型臥式螺旋連續(xù)油管蒸汽發(fā)生器。研究表明,兩者成核機理和連接機構(gòu)重要的強制對流沸騰傳熱在小螺旋盤繞管的全方位系數(shù)。庫馬爾和Nigam [10]介紹了一種新設(shè)備在離心力的作用下,通過改變反轉(zhuǎn)螺旋管的方向。得到流場和溫度等數(shù)據(jù),其特征在于使用計算流體動力學(xué)軟件。結(jié)果從本研究獲得的可用于模擬彎管發(fā)生的流體流動。
Rennie和Raghavan [11]進行了雙重管子螺旋線熱轉(zhuǎn)換器的一項實驗性研究。Parallelflow與.Nusselt進行了逆流程配置設(shè)備中得到的數(shù)據(jù)相比較比較.Cioncolini和Santini [12]在螺線管實驗學(xué)習從層流與湍流。用不同的卷直徑比與管直徑相比較,相互作用從中獲得的摩擦因子被分析。Cui[13]提出了R134a的熱傳遞交互作用在煮沸在流程期間有螺線管討論。Wongwises和Polsongkram [14]在光滑的螺線卷起的同心管在在蒸發(fā)期間的管熱轉(zhuǎn)換器里面,調(diào)查了HFC- 134a兩相傳熱系數(shù) 和降壓。他們在一支螺旋的同心管也使用同一個實驗性設(shè)定揭露熱傳遞和HFC134a降壓在管熱轉(zhuǎn)換器中的影響[15]。結(jié)果從當前實驗與從平直的管獲得的那些比較性報告。提出了新的交互作用為蒸發(fā)與結(jié)露傳熱系數(shù)和降壓在實際中的應(yīng)用。
雖然用一定數(shù)量的紙是可以得到的在螺旋管,但是它可以得到,在發(fā)現(xiàn)的理論和實驗性調(diào)查中,描述以集中于熱傳遞和流程的研究在一支唯一螺旋面的管或在同心雙重管螺線卷,從殼和螺線被盤繞的管所制造的熱轉(zhuǎn)換器的熱傳遞和流程的特征。在本研究中,主要關(guān)心的是實驗性學(xué)習熱傳遞的特征,即螺旋的熱轉(zhuǎn)換器的一個新型的特征,有鰭管熱轉(zhuǎn)換器在drysurface之下適應(yīng)。 各種各樣的相關(guān)的參量之間的關(guān)系被研究探索。在之前從未發(fā)現(xiàn),現(xiàn)在提出實驗性結(jié)果。
2 實驗性用具和方法
圖1顯示實驗性用具的一張概要圖。系統(tǒng)的主要成份包括測試部分、熱水圈、空氣圈和數(shù)據(jù)收集系統(tǒng)。水和空氣當工作流體使用。測試部分是螺旋的翅片管熱轉(zhuǎn)換器。在加法對圈組分,在電路上,儀器溫度和所有流體的流速的測量和控制安裝在首要的節(jié)點。
打開類似的風洞用于模擬氣流通過熱轉(zhuǎn)換器。通道為300毫米長,直徑為12 m。輸送管墻壁絕緣與6.4毫米thickAeroflex標準板料制成。 熱轉(zhuǎn)換器的進入的和退出的氣溫由類似的延伸在氣流的空氣通道里面的T銅康銅熱電偶測量。 1毫米直徑的熱電偶探頭順時針位于在不同的四個位置的同一個橫斷面上, 60 cm逆流熱轉(zhuǎn)換器入口的四個位置在50 cm熱轉(zhuǎn)換器的出口。
閉環(huán)熱水包括一個0.3 m3儲存箱,一臺調(diào)整控制電壓的電暖氣,絞拌器,并且在儲存箱里面有一支冷卻旋管。R22作為冷凍劑使用為使水變冷。一臺離心吹風機釋放空氣入通道和通過直挺器,導(dǎo)葉,測試部分,然后被釋放給大氣。直挺器的目的是避免空氣的畸變離心吹風機的速度是由變換器控制的。
Fig. 1 實驗性用具1張概要圖
空氣從管口獲得,流速是一定的。在調(diào)整水的溫度達到期望水平之后,熱水抽到儲存箱外面,通過過濾器,流量計,測試部分,然后返回到儲存箱。旁路是通過過量水的循環(huán)使用回到儲水箱達到最低水位的流速實驗。水的流速由一支流量計測量,在0-10 GPM的范圍。
如所顯示。 2.熱轉(zhuǎn)換器包括一根鋼毛管和一個螺旋翅片管單位。螺線盤繞單位包括螺旋的有鰭的銅管四卷。每支管通過彎曲一個平直的9.4毫米外部直徑的銅管制造的七層螺線卷。每個螺線盤繞直徑分別是115, 205, 285和365毫米,鋁的飛翅以0.5毫米和28.25毫米外直徑的厚度在管附近安裝維螺線。飛翅邊緣在內(nèi)在直徑是波紋狀的。用于本研究的螺旋翅片管為單位的相片顯示在上圖。3.飛翅概要圖也顯示在上圖。4. 每卷的水的入口和出口末端到連接到水平的多頭的用28.5毫米外面直徑的管。銅-銅熱電偶安裝在第一,第四和第七層,從最高的層數(shù)起記每卷,其中用二對熱電偶測量水溫和墻壁溫度。安裝了熱電偶顯示在如圖位置。2. 水溫是用被在管里面的1毫米直徑探針測量的,在水流量的測量亦如此。 熱電偶在一個小孔被焊接的0.5毫米深入管墻壁表面,固定與特別膠漿被應(yīng)用于管材外表面。以這個方法的熱電偶沒有由可變的溫度偏心。熱轉(zhuǎn)換器的維度在表1被列出。
在實驗中,整體能量平衡估計所有熱耗或獲取的程度從中圍攏。滿足能量衡的數(shù)據(jù)適應(yīng); |Qw - Qa|/Qave少于0.05,用于分析是。變濃熱轉(zhuǎn)學(xué)比例,Qave,空氣的熱傳遞率、Qa熱傳遞率,Qw平均熱傳遞率。試驗做了以空氣和熱水測試部分的不同的流速。當空氣流動率,入口熱水溫度都保持恒定時,熱水流速隨的速度增加而增加。使用溫度調(diào)解器控制的電暖氣可以調(diào)整熱水溫度以達到期望水平。在所有數(shù)據(jù)被記錄了之前,系統(tǒng)允許接近穩(wěn)定。試驗條件的范圍在這其中測量的研究和不確定值分別在表2和3被測量。
表1 螺旋翅片管熱轉(zhuǎn)換器的維度
參量 大小
外直徑管(毫米) 9.4
內(nèi)直徑管(毫米) 8.6
直徑 115.0
直徑螺旋卷2 (毫米) 205.5
直徑螺旋卷3 (毫米) 285.0
直徑螺旋卷4 (毫米) 365.0
螺線簧圈節(jié)距(毫米) 16.38
殼直徑(毫米) 430
卷輪的數(shù)字 7
螺線卷的數(shù)字 4
每卷之間的距離(毫米) 42
殼的長度(毫米) 355
進氣口的孔直徑 (毫米) 298
飛翅的每米數(shù)值 500
飛翅高度(毫米) 18.64
飛翅外部直徑(毫米) 28.25
飛翅高度(毫米) 2
飛翅厚度(毫米) 0.5
表2試驗條件
可變物 范圍
入口空氣溫度 四周
入口水溫度(k) 313–323 (40–50_C)
空氣流量率(kg/s) 0.04–0.13
水質(zhì)量流率(kg/s) 0.20–0.40
測量表3不確定性
儀器 準確性(%) 不確定性(%)
管口米(空氣速度m/s) 2.0 ±0.23
轉(zhuǎn)子流量計(水質(zhì)量流率kg/s) 0.2 ±0.003
熱電偶T類型, 0.1 ±0.03
數(shù)據(jù)列表(k) 0.04
濕氣發(fā)射機 0.5 ±0.22
3 數(shù)據(jù)
為了確定熱傳遞典型的熱轉(zhuǎn)換器從被記錄數(shù)據(jù)的穩(wěn)定情況在每次測驗運行期間,修正系數(shù)對數(shù)的方法運用于溫度確定UA。
可以給空氣的熱傳遞率
那是,空氣流量率是入口空氣的焓,是出口空氣的焓。
可以給的空氣的熱傳遞率
那是水的質(zhì)量流率,控制點,w是水,Tw比熱,并且Tw,分別為入口和出口水的溫度。
用于演算的熱傳遞的總率從空氣邊和海濱平均值
空氣邊傳熱系數(shù)熱轉(zhuǎn)換器從整體熱傳遞關(guān)系是恒定的
那總傳熱系數(shù)可以被確定為
那對數(shù)意味溫度區(qū)別為
且F是修正系數(shù)。
管邊傳熱系數(shù),從Gnielinski semi-empirical交互作用得到的Nusselt數(shù)字被評估[16]為。
Prandtl數(shù)值,Pr,被評估為可變的溫度,并且被評估為墻壁溫度。因素被介入原始的等式,由Schmidt [17]考慮到有形的溫度的依賴性。為湍流在螺旋管摩擦因子[18]
那是曲度,D的直徑,與卷直徑Dc和高度,P有關(guān),螺線卷
動力粘度,μ,是水在絕對水溫,且動力粘度,是在墻壁溫度。雷諾茲數(shù)值計算從
那是水密度,是水動力粘度, d是螺線卷(8.6毫米)的內(nèi)直徑,且是平均速度,水的螺線卷。
整體表面的有效率,,被定義為有效熱調(diào)動區(qū)域比與變濃熱調(diào)動區(qū)域,可以被飛翅有效率、飛翅表面 總表面積,,如以下:
在中,是基本的區(qū)域。飛翅有效率ρ,取決于提議的方法。[19]如下
是從管的中心的到飛翅表面的距離,
是從管的中心的到飛翅內(nèi)側(cè)的距離,
是第一種類,修改過的貝賽爾作用解答,0,
是第一種類,修改過的貝賽爾作用解答,1,
是第二種類,修改過的貝賽爾作用解答,0,
是第二種類,修改過的貝賽爾作用解答,1,
是從
其中是飛翅厚度和是飛翅的導(dǎo)熱性。
要獲得空氣的傳熱系數(shù),,一個是解決。 (4)–(12). 熱轉(zhuǎn)換器的空氣的傳遞特征如下被提出用Colburn j因素
如:
用于有效率評估螺線卷起的熱轉(zhuǎn)換器的效果:
4 結(jié)果和討論
圖5在顯示水溫和管墻壁溫度在不同的位置在和在上圖顯示的卷數(shù)字,用于辨認被考慮的卷,即卷第1和4代表,各自最內(nèi)層的卷和最外層的卷。水和管墻壁溫度被測量在每卷的最高的層數(shù)(層數(shù)1)和最低的層數(shù)(層數(shù)7)。 熱水進入最最低的層數(shù)被分離到每卷,沿每卷流動并且流動在最高的層數(shù)(層數(shù)1)??諝膺M入熱轉(zhuǎn)換器在殼的上面和中心并且橫跨流動在水軸向地流動在熱轉(zhuǎn)換器之前在排氣口部分,在熱轉(zhuǎn)換器的底部。,水溫和管墻壁溫度總高于預(yù)計的同一個位置。在熱水流程期間中沿每卷從更低的層數(shù)到上層,熱水將逐漸轉(zhuǎn)移到空氣,導(dǎo)致水和管墻壁溫度減退在上層。
圖6顯示水溫和管墻壁在層數(shù)每螺線卷、和= 0.085 kg/s為另外入口水溫42,。 它能清楚地被看見水溫和管墻壁溫度在每卷增加以在入口水溫的增量。 他們從內(nèi)在卷逐漸也減少到外面卷。
圖7顯示水溫和管墻壁溫度在層數(shù)每螺線卷1的Tw,在為0.33, 0.37 kg/s.的水質(zhì)量流率。應(yīng)該注意到它,當入口水溫,入口氣溫,空氣流量率是常數(shù),并且管墻壁溫度以最低水位質(zhì)量流率相比。
。
圖5 水溫的變化和管圍住溫度在層數(shù)1和層數(shù)7數(shù)值
圖6 水溫和管墻壁溫度的變化在層數(shù)1以卷數(shù)為不同的入口水溫度
圖7 水溫和管墻壁溫度的變化在層數(shù)1以卷數(shù)化為水質(zhì)量流率
圖8顯示水溫和管墻壁溫度在層數(shù)每螺線卷1在Tw,在, 0.071, 0.11 kg/s.的另外空氣流量率。 隨著空氣流量率的增加,水溫和管墻壁溫度傾向于減少。 然而,它能被看見空氣流量率的作用在水溫和管墻壁溫度是非常低的。
圖9顯示出口氣溫的變化以空氣流量率為Ta,在為入口水溫40,45,。 在具體入口氣溫,入口水溫,澆灌質(zhì)量流率和結(jié)果得到。 8空氣流量率影響水溫,保持熱傳遞率單程與水邊相等,當增加時空氣流量率是通過減少出口氣溫。所以,它能清楚地被看見為特定水質(zhì)量流率、入口水溫和入口氣溫,出口氣溫傾向于減少以質(zhì)量流率。另外,以平靜的空氣質(zhì)量流率,出口氣溫在更高的入口水溫那橫跨空氣流量率的范圍。
圖10顯示在出口氣溫和空氣流量率之間Ta,在= 32 C, Tw,在= 50 C為0.21, 0.25, 0.29, 0.33, 0.37 kg/s.的另外的水質(zhì)量流率。以平靜空氣質(zhì)量流率,出口氣溫,以水位高質(zhì)量流率橫跨空氣流量率。
當空氣流量率在Ta,另外入口水溫40, 45, 50 C.,圖11在出口水溫顯示的變化。 在上這個圖顯示的結(jié)果對應(yīng)與那些在數(shù)值。 4. 出口水溫傾向于輕微地減少在空氣流量率的增量。
圖8水的溫度和管壁溫度的變化在第一層線圈數(shù)不同的空氣質(zhì)量流率
圖9出口空氣的溫度與空氣質(zhì)量流率的變化針對不同的入口水溫
圖10出口空氣的溫度與空氣質(zhì)量流量的變化在不同的水的質(zhì)量流率
圖11出口水溫的變化與空氣質(zhì)量流率在不同的入口水溫
圖12與空氣質(zhì)量流量的平均傳熱率的變化在不同的水的質(zhì)量流率率
圖12在= 32 C, Tw顯示平均熱傳遞率被反對空氣流量率Ta,在= 45 C為0.21, 0.25, 0.29, 0.33, 0.37 kg/s.的水質(zhì)量流率。熱傳遞率與空氣流量率和水質(zhì)量流率地比例。水質(zhì)量流率的在熱傳遞率能清楚地看到的更高的空氣流量率。
圖13管側(cè)的傳熱系數(shù)與水的變化質(zhì)量流率不同的入口的水的溫度
圖13顯示的平均管側(cè)的變化傳熱系數(shù)計算出來的數(shù)據(jù)獲得的與水的質(zhì)量流率在本實驗中各種進水溫度。正如預(yù)期的那樣,隨平管側(cè)的傳熱系數(shù)的增大而增加的水的質(zhì)量流率。在一個給定的水的質(zhì)量流率,平均管側(cè)的熱傳遞系數(shù)較高的高于較低的進口水溫。此外,我們的實驗結(jié)果表明,管側(cè)傳熱的空氣質(zhì)量流率的影響系數(shù)。
圖14與空氣的空氣側(cè)的傳熱系數(shù)的變化質(zhì)量流率不同的入口的水的溫度
圖15與空氣的空氣側(cè)的傳熱系數(shù)的變化得不同的水的質(zhì)量流率的質(zhì)量流量
圖14和15示為不同的空氣質(zhì)量流率的傳熱系數(shù)與入口的水的溫度和水的質(zhì)量流率外端的變化,外側(cè)的傳熱系數(shù)迅速地增加與空氣的質(zhì)量流率。入口的水的溫度和水的質(zhì)量流率,顯示出顯著的作用,對外側(cè)的傳熱系數(shù)。
圖16,17和18顯示科爾伯恩j數(shù)與空氣側(cè)雷諾茲數(shù)。空氣側(cè)的雷諾數(shù)計算,REA = qaVaD的/拉QA為空氣的密度,la是空氣的動力粘度。兩密度和動態(tài)粘度的基礎(chǔ)上,測得正確的空氣溫度。 D是入口部分的熱交換器的直徑(D = 0.298米)。 Va是流動的空氣的熱量通過入口交換率的平均速度。如圖所示,科爾伯恩?因素隨空氣側(cè)的雷諾數(shù)的增加水側(cè)的雷諾數(shù)。從圖中觀察到的水的質(zhì)量流量和進水溫度有重大影響的特點。從該圖可以看出,由于空氣雷諾數(shù)的增加,所有的曲線變得平坦并傾向于接近一個特定的科爾伯恩j數(shù)。
圖16科爾伯恩因素變化與空氣側(cè)雷諾茲數(shù)不同的入口水溫
圖17科爾伯恩因素的變化與空氣側(cè)雷諾茲不同的入口水溫
圖18科爾伯恩因素變化與空氣側(cè)雷諾茲不同的水的質(zhì)量流率數(shù)
圖19熱交換器的變化與空氣側(cè)的有效性雷諾數(shù)得到的不同的入口的水的溫度
圖20熱交換器的變化與空氣側(cè)的有效性雷諾數(shù)得到的不同的水的質(zhì)量流率
圖19,20顯示的空氣側(cè)雷諾數(shù)的有效性變化。用于估計螺旋換熱器的性能是由式確定。(15)。
在本研究中使用,在整個范圍內(nèi)的水的質(zhì)量流量和氣團的流速,熱容量率,水(MCP)w是一般高于空氣(MCP)。因此,熱水的容積率是最低的容量率(MCP)式中的最小值。 (15)??梢郧宄乜吹?,隨這個數(shù)字的有效性降低,而增加空氣側(cè)雷諾數(shù)。在一個給定的空氣側(cè)的雷諾數(shù),較高的進水溫度,水的質(zhì)量和較高的流速往往導(dǎo)致有效性增加。然而,可以注意到,在一個特定的空氣側(cè)雷諾數(shù)值,有效性的差異變得相對入口的水的溫度較之升高。
5 結(jié)論
本文介紹了一種新型的熱傳遞換熱器,即一個螺旋翅片管換熱器。熱交換器由四個螺旋盤繞翅片銅管,每一個有七個回合。鋁周圍的銅螺旋卷曲翅片放置管中。相對的有關(guān)的實驗條件,給出如下結(jié)論:
?管側(cè)空氣質(zhì)量流率沒有影響傳熱系數(shù)。
?入口水溫和水的質(zhì)量流率顯示出的效果,如輸出側(cè)傳熱系數(shù)。
?科爾伯恩j數(shù)和效益是成反比,與空氣側(cè)雷諾數(shù)成比例,而是水的質(zhì)量流量和進水溫度成正比的。
致謝作者 我想表達自己的感謝,為泰國研究基金會(TRF)提供財務(wù)支持這項研究。作者希望Jittaphoom先生Inphiban他們協(xié)助Panaphot Youngsuk先生在此工作。
參考文獻
1. Dravid AN, Smith KA, Merrill EW, Brian PLT (1971) Effect of secondary
fluid on laminar flow heat transfer in helically coiled tubes. AIChE J 17:1114–1122
2. Patankar SV, Pratap VS, Spalding DB (1974) Prediction of laminar flow and heat transfer in helically coiled pipes. J Fluid Mech 62:539–551
3. Yang G, Ebadian MA (1996) Turbulent forced convection in a helicoidal pipe with substantial pitch. Int J Heat Mass Transf 39:2015–2022
4. Lin CX, EbadianMA(1997) Developing turbulent convective heat transfer in helical pipes. Int J Heat Mass Transf 40:3861–3873
5. Xin RC, Awwad A, Dong ZF, Ebadian MA (1997) An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes. Int J Heat Fluid Flow 18:482–488
6. Guo L, Feng Z, Chen X (2001) Pressure drop oscillation of steam-water two-phase flow in a helically coiled tube. Int J Heat Mass Transf 44:1555–1564
7. Ju H, Huang Z, Xu Y, Duan B, Yu Y (2001) Hydraulic performance of small bending radius helical coil-pipe. J Nucl Sci Technol 18:826–831
8. Ali S (2001) Pressure drop correlations for flow through regular helical coil tubes. Fluid Dyn Res 28:295–310
9. Zhao L, Guo L, Bai B, Hou Y, Zhang X (2003) Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once-through steam generator. Int J Heat Mass Transf 46:4779–4788
10. Kumar V, Nigam KDP (2005) Numerical simulation of steady flow fields in coiled flow inverter. Int J Heat Mass Transf 48:4811–4828
11. Rennie T, Raghavan V (2005) Experimental studies of a doublepipe helical heat exchanger. Exp Therm Fluid Sci 29:919–924
12. Cioncolini A, Santini L (2006) An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes. Exp Therm Fluid Sci 30:367–380
13. Cui W, Li L, Xin M, Jen T, Chen Q, Liao Q (2006) A heat transfer correlation of flow boiling in micro-finned helically coiled tube. Int J Heat Mass Transf 49:2851–2858
14. Wongwises S, Polsongkram M (2006) Evaporation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger. Int J Heat Mass Transf 49:658–670
15. Wongwises S, Polsongkram M (2006) Condensation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger. Int J Heat Mass Transf 49:4386–4398
16. Hewitt GF (1990) Hemisphere handbook of heat exchanger design. Hemisphere publishing corporation, USA
17. Schmidt EF (1967) Waermeuebergang und Druckverlust in Rohrschlangen. Chem Ing Tech 39:781–789
18. Mishra P, Gupta SN (1979) Momentum transfer in curved pipe, I. Newtonian fluids. Dev Ind Eng Chem Process Des 18:130–137
19. Wang CC, Hsieh YC, Lin YT (1997) Performance of plate finned tube heat exchangers under dehumidifying conditions. ASME J Heat Transf 119:109–117