高中數(shù)學(xué) 1_3《組合》教案1 蘇教版選修2-31
《高中數(shù)學(xué) 1_3《組合》教案1 蘇教版選修2-31》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 1_3《組合》教案1 蘇教版選修2-31(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1.3組合 課題 1.3組合 組合的意義 第一課時(shí) 教學(xué)目標(biāo) 知識(shí)與技能:理解組合的意義,能寫(xiě)出一些簡(jiǎn)單問(wèn)題的所有組合。明確組合與排列的聯(lián)系與區(qū)別,能判斷一個(gè)問(wèn)題是排列問(wèn)題還是組合問(wèn)題。 過(guò)程與方法:了解組合數(shù)的意義,理解排列數(shù)與組合數(shù) 之間的聯(lián)系,掌握組合數(shù)公式,能運(yùn)用組合數(shù)公式進(jìn)行計(jì)算。 情感、態(tài)度與價(jià)值觀:能運(yùn)用組合要領(lǐng)分析簡(jiǎn)單的實(shí)際問(wèn)題,提高分析問(wèn)題的能力。 教學(xué)重點(diǎn) 教學(xué)難點(diǎn) 明確組合與排列的聯(lián)系與區(qū)別,能判斷一個(gè)問(wèn)題是排列問(wèn)題還是組合問(wèn)題。 理解排列數(shù)與組合數(shù) 之間的聯(lián)系,掌握組合數(shù)公式,能運(yùn)用組合數(shù)公式進(jìn)行計(jì)算 教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。 教學(xué)設(shè)想:能理解組合的意義,能寫(xiě)出一些簡(jiǎn)單問(wèn)題的所有組合。 教學(xué)過(guò)程: 學(xué)生探究過(guò)程: 1、 高二(1)班從甲,乙,丙三名學(xué)生中選2名學(xué)生代表,有多少種不同的選法?從1、2、3三個(gè)數(shù)字中選兩個(gè)數(shù)字,能構(gòu)成多少個(gè)不同的集合? 這兩個(gè)問(wèn)題與上一節(jié)中相應(yīng)的排列問(wèn)題有何區(qū)別?有何聯(lián)系? 學(xué)生活動(dòng) 1.排列定義: 2.這兩個(gè)問(wèn)題與上一節(jié)中相應(yīng)的排列問(wèn)題有何區(qū)別?有何聯(lián)系? 發(fā)現(xiàn)上面兩個(gè)問(wèn)題其實(shí)就是排列的第一個(gè)步驟的結(jié)果也就是將元素取出。 建構(gòu)數(shù)學(xué) 一般地,從n個(gè)不同元素中取出m個(gè)不同元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)不同元素的一個(gè)組合 數(shù)學(xué)應(yīng)用 例1、 判斷下列問(wèn)題是組合還是排列 (1)在北京、上海、廣州三個(gè)民航站之間的直達(dá)航線上,有多少種不同的飛機(jī)票?有多少種不同的飛機(jī)票價(jià)? (2)高中部11個(gè)班進(jìn)行籃球單循環(huán)比賽,需要進(jìn)行多少場(chǎng)比賽? (3)從全班23人中選出3人分別擔(dān)任班長(zhǎng)、副班長(zhǎng)、學(xué)習(xí)委員三個(gè)職務(wù),有多少種不同的選法?選出三人參加某項(xiàng)勞動(dòng),有多少種不同的選法? (4)10個(gè)人互相通信一次,共寫(xiě)了多少封信? (5)10個(gè)人互通電話一次,共多少個(gè)電話? 問(wèn)題:(1)1、2、3和3、1、2是相同的組合嗎? (2)什么樣的兩個(gè)組合就叫相同的組合 例2.寫(xiě)出從a、b、c、d四個(gè)元素中,每次取出2個(gè)元素的可能情況; 從n個(gè)不同元素中取出m個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),用符號(hào) 表示 學(xué)生活動(dòng):根據(jù)排列與組合的關(guān)系,如何去求組合數(shù)呢? 一般地,求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù),可以分為以下2步: 第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù) . 第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù) 根據(jù)分步計(jì)數(shù)原理,得到 因此: 這個(gè)公式叫做組合數(shù)公式. 上面這個(gè)公式還可寫(xiě)成 例題:計(jì)算: 鞏固練習(xí):書(shū)本第21頁(yè)1,2,3 , 4 課外作業(yè):第25頁(yè) 習(xí)題1.3 1,2,3 教學(xué)反思: 排列組合問(wèn)題聯(lián)系實(shí)際生動(dòng)有趣,題型多樣新穎且貼近生活,解法靈活獨(dú)到但不易掌握,許多學(xué)生面對(duì)較難問(wèn)題時(shí)一籌莫展、無(wú)計(jì)可施,尤其當(dāng)從正面入手情況復(fù)雜、不易解決時(shí),可考慮換位思考將其等價(jià)轉(zhuǎn)化,使問(wèn)題變得簡(jiǎn)單、明朗。 例1. 3名醫(yī)生和6名護(hù)士被分配到3所學(xué)校為學(xué)生體檢,每校分配1名醫(yī)生和2名護(hù)士,不同的分配方法共有 A、90種 B、180種 C、270種 D、540種 簡(jiǎn)析:正面思路是人選學(xué)校,現(xiàn)在采取學(xué)校選人的做法:第一所學(xué)校在3名醫(yī)生中選1人,6名護(hù)士中選2人,即有C31C62 =45種;第二所學(xué)校在剩下2名醫(yī)生中選1人,剩下4名護(hù)士中選2人,有C21C42=12種;與此同時(shí),第三所學(xué)校的人選已定,即為剩下的3人,據(jù)乘法原理共有4512=540種方案。選D。 例2. 從6個(gè)運(yùn)動(dòng)員中選出4人參加4100米接力賽,如果甲乙兩人都不跑第一棒,那么有 種不同的參賽方案?(用數(shù)字作答) 簡(jiǎn)析:分類討論要考慮三類:(1)甲、乙兩人都不選出;(2)甲、乙兩人中僅選1人;(3)甲、乙兩人都被選出. 而如果我們采取“棒”選學(xué)生,則問(wèn)題相當(dāng)明朗:即第1、第4棒只有從除甲乙兩人外的4人中選兩人有P42種,第2、第3棒則在前面選剩下的2人和甲、乙兩人共4人中選2人參加,也有P42種,據(jù)乘法原理,共有P42P42 =144種。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 組合 高中數(shù)學(xué) 1_3組合教案1 蘇教版選修2-31 _3 教案 蘇教版 選修 31
鏈接地址:http://m.kudomayuko.com/p-11969314.html