高中數(shù)學(xué) 2_5 隨機(jī)變量的均值和方差(第1課時(shí))教案 蘇教版選修2-31
《高中數(shù)學(xué) 2_5 隨機(jī)變量的均值和方差(第1課時(shí))教案 蘇教版選修2-31》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 2_5 隨機(jī)變量的均值和方差(第1課時(shí))教案 蘇教版選修2-31(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.5.1 離散型隨機(jī)變量的均值 課時(shí)目標(biāo)1.通過(guò)實(shí)例,理解取有限值的離散型隨機(jī)變量的均值(數(shù)學(xué)期望)的概念和意義.2.能計(jì)算簡(jiǎn)單離散型隨機(jī)變量的均值(數(shù)學(xué)期望),并能解決一些實(shí)際問(wèn)題. 1.離散型隨機(jī)變量X的均值或數(shù)學(xué)期望 若離散型隨機(jī)變量X的概率分布列為P(X=xi)=pi,則稱(chēng)________________________為離散型隨機(jī)變量X的均值(或數(shù)學(xué)期望),記為E(X)或μ. 2.特殊分布的數(shù)學(xué)期望 (1)若隨機(jī)變量X~0-1分布,則E(X)=________; (2)若隨機(jī)變量X~H(n,M,N),則E(X)=; (3)若隨機(jī)變量X~B(n,p),則E(X)=________. 一、填空題 1.設(shè)隨機(jī)變量ξ的分布列為P(X=k)=,k=1,2,3,4,則E(X)的值為_(kāi)_______. 2.已知隨機(jī)變量X的概率分布表是: X 4 a 9 10 P 0.3 0.1 b 0.2 ,E(X)=7.5,則a=________. 3.已知隨機(jī)變量ξ的概率分布表為 ξ 0 1 2 P 則η=2ξ+3,則E(η)=________. 4.兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望是________. 5.從4名男生和2名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量ξ表示所選3人中女生的人數(shù),則ξ的數(shù)學(xué)期望為_(kāi)_____. 6.隨機(jī)變量ξ的概率分布由下表給出: ξ 7 8 9 10 P 0.3 0.35 0.2 0.15 則隨機(jī)變量ξ的均值是________. 7.某射手射擊所得環(huán)數(shù)ξ的概率分布表如下: ξ 7 8 9 10 P x 0.1 0.3 y 已知ξ的期望E(ξ)=8.9,則y的值為_(kāi)_______. 8.某漁業(yè)公司要對(duì)下月是否出海做出決策,若出海后遇到好天氣,則可得收益60 000元,若出海后天氣變壞,則將損失80 000元,若不出海,則無(wú)論天氣好壞都將損失10 000元,據(jù)氣象部門(mén)的預(yù)測(cè),下月好天氣的概率為60%,壞天氣的概率為40%,該公司應(yīng)做出決策_(dá)_______(填“出?!被颉安怀龊!?. 二、解答題 9.某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用X表示,據(jù)統(tǒng)計(jì),隨機(jī)變量X的概率分布如下表: X 0 1 2 3 P 0.1 0.3 2a a (1)求a的值和X的數(shù)學(xué)期望; (2)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率. 10.袋中有4只紅球,3只黑球,今從袋中隨機(jī)地取出4只球.設(shè)取到1只紅球得2分,取到1只黑球得1分,試求得分X的分布列和均值. 能力提升 11.某種種子每粒發(fā)芽的概率都為0.9,現(xiàn)播種了1 000粒,對(duì)于沒(méi)有發(fā)芽的種子,每粒需要再補(bǔ)種2粒,補(bǔ)種的種子數(shù)記為X,則X的數(shù)學(xué)期望為_(kāi)_______. 12.設(shè)S是不等式x2-x-6≤0的解集,整數(shù)m,n∈S. (1)記“使得m+n=0成立的有序數(shù)組(m,n)”為事件A,試列舉A包含的基本事件; (2)設(shè)ξ=m2,求ξ的概率分布表及其數(shù)學(xué)期望E(ξ). 1.求均值的關(guān)鍵是求出分布列,只要求出隨機(jī)變量的分布列,就可以套用均值的公式求解,對(duì)于aX+b型隨機(jī)變量的均值,可以利用均值的性質(zhì)求解. 2.三種特殊分布的數(shù)學(xué)期望可直接結(jié)合公式計(jì)算. 2.5 隨機(jī)變量的均值和方差 2.5.1 離散型隨機(jī)變量的均值 答案 知識(shí)梳理 1.x1p1+x2p2+…+xnpn 2.(1)p (3)np 作業(yè)設(shè)計(jì) 1.2.5 解析 E(X)=1+2+3+4 =10=2.5. 2.7 解析 ∵E(X)=40.3+0.1a+9b+2=7.5, 0.3+0.1+b+0.2=1, ∴a=7,b=0.4. 3. 解析 E(ξ)=0+1+2==, 又∵η=2ξ+3, ∴E(η)=2E(ξ)+3=2+3=. 4. 解析 由題意知ξ~B(2,),∴E(ξ)=2=. 5.1 解析 方法一 ξ可能取的值為0,1,2,P(ξ=k)=,k=0,1,2,所以ξ的概率分布為 ξ 0 1 2 P 故E(ξ)=0+1+2=1. 方法二 ξ~H(3,2,6),E(ξ)==1. 6.8.2 解析 E(ξ)=70.3+80.35+90.2+100.15=8.2. 7.0.4 解析 ∵E(ξ)=7x+80.1+90.3+10y=7(0.6-y)+10y+3.5=7.7+3y,∴7.7+3y=8.9,∴y=0.4. 8.出海 解析 設(shè)ξ為公司出海的獲利,則ξ的分布列為 ξ 60 000 -80 000 P 0.6 0.4 所以獲利期望E(ξ)=36 000-32 000=4 000>-10 000,所以應(yīng)出海. 9.解 (1)由概率分布的性質(zhì)有0.1+0.3+2a+a=1,解得a=0.2. ∴X的概率分布表為 X 0 1 2 3 P 0.1 0.3 0.4 0.2 ∴E(X)=00.1+10.3+20.4+30.2=1.7. (2)設(shè)事件A表示“兩個(gè)月內(nèi)共被投訴2次”;事件A1表示“兩個(gè)月內(nèi)有一個(gè)月被投訴2次,另一個(gè)月被投訴0次”;事件A2表示“兩個(gè)月內(nèi)每個(gè)月均被投訴1次”. 則由事件的獨(dú)立性得 P(A1)=CP(X=2)P(X=0)=20.40.1=0.08, P(A2)=[P(X=1)]2=0.32=0.09. ∴P(A)=P(A1)+P(A2)=0.08+0.09=0.17. 故該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率為0.17. 10.解 直接考慮得分的話,情況較復(fù)雜,可以考慮取出的4只球顏色分布情況:4紅得8分,3紅1黑得7分,2紅2黑得6分,1紅3黑得5分. 故P(X=5)==; P(X=6)==; P(X=7)==; P(X=8)==. 所以均值E(X)=5+6+7+8=. 11.200 解析 種子發(fā)芽率為0.9,不發(fā)芽率為0.1,每粒種子發(fā)芽與否相互獨(dú)立,故設(shè)沒(méi)有發(fā)芽的種子數(shù)為ξ,則ξ~B(1 000,0.1),∴E(ξ)=1 0000.1=100,故需補(bǔ)種的期望為 E(X)=2E(ξ)=200. 12.解 (1)由x2-x-6≤0,得-2≤x≤3, 即S={x|-2≤x≤3}. 由于m,n∈Z,m,n∈S且m+n=0,所以A包含的基本事件為(-2,2),(2,-2), (-1,1),(1,-1),(0,0). (2)由于m的所有不同取值為-2,-1,0,1,2,3, 所以ξ=m2的所有不同取值為0,1,4,9, 且有P(ξ=0)=, P(ξ=1)==, P(ξ=4)==, P(ξ=9)=. 故ξ的概率分布表為 ξ 0 1 4 9 P 所以E(ξ)=0+1+4+9=. 5- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 2_5 隨機(jī)變量的均值和方差第1課時(shí)教案 蘇教版選修2-31 _5 隨機(jī)變量 均值 方差 課時(shí) 教案 蘇教版 選修 31
鏈接地址:http://m.kudomayuko.com/p-11971346.html