筆蓋的注塑模具設(shè)計(jì)【筆帽、筆套注塑模1模12腔優(yōu)秀課程畢業(yè)設(shè)計(jì)含12張CAD圖紙帶任務(wù)書(shū)+開(kāi)題報(bào)告+外文翻譯】-zsmj22
筆蓋的注塑模具設(shè)計(jì)【筆帽、筆套注塑模1模12腔】
摘 要
注塑成型在整個(gè)制造業(yè)的生產(chǎn)中占有十分重要的地位,據(jù)估計(jì)注塑成型的制品約占模具塑料制品總產(chǎn)量的三分之一及以上,注塑模具在模具工業(yè)中的重要性顯而易見(jiàn),現(xiàn)在注塑模具設(shè)計(jì)和制造中的傳統(tǒng)方法早已滿足不了現(xiàn)代生產(chǎn)發(fā)展的需要,為贏得競(jìng)爭(zhēng)市場(chǎng),持續(xù)發(fā)展,模具生產(chǎn)必須變革傳統(tǒng)的生產(chǎn)方法,引進(jìn)新技術(shù)、新思維。
在計(jì)算機(jī)技術(shù)日益發(fā)達(dá)的今天,將計(jì)算機(jī)運(yùn)用于注塑模具以及制造業(yè)中已經(jīng)迫在眉睫。本文主要研究的工作和成果如下:
本文具體的闡述了模具CAD/CAE的技術(shù)特點(diǎn),以及先進(jìn)制造模式在模具行業(yè)中的應(yīng)用,在分析的國(guó)際國(guó)內(nèi)模具市場(chǎng),國(guó)內(nèi)模具CAD/CAE的發(fā)展趨勢(shì)的基礎(chǔ)上提出以計(jì)算機(jī)應(yīng)用技術(shù)為手段的輔助模具設(shè)計(jì)的新方法。主要針對(duì)注塑模具常見(jiàn)的成型方法進(jìn)行了分析研究,以達(dá)到將注塑模具過(guò)程智能化在熟悉注塑模具設(shè)計(jì)基本知識(shí)的基礎(chǔ)上,對(duì)系統(tǒng)進(jìn)行分析并設(shè)計(jì)出系統(tǒng)的總體框架。 我們運(yùn)用Pro/E軟件中的模具模塊以及塑料仿真模塊來(lái)進(jìn)行對(duì)模具進(jìn)行了各個(gè)系統(tǒng)的設(shè)計(jì)。
本文是對(duì)筆蓋注塑模具設(shè)計(jì)的一個(gè)詳細(xì)的介紹,這次的筆蓋模具設(shè)計(jì)我們主要采用了側(cè)抽芯注射模。每個(gè)筆蓋有一個(gè)大孔,成型需要側(cè)抽芯。本模具采用一模十二腔,二次分型,點(diǎn)澆口進(jìn)料,彈簧和斜導(dǎo)柱分別抽芯。設(shè)計(jì)的主要內(nèi)容有:筆蓋的設(shè)計(jì),筆蓋材料的選擇,注塑機(jī)的選用、分型面、型腔布局、澆注系統(tǒng)、型腔尺寸計(jì)算、型芯尺寸的計(jì)算、螺紋型心、模架的選擇、推出脫模機(jī)構(gòu)的設(shè)計(jì)、溫度調(diào)節(jié)系統(tǒng)和裝配圖與零件圖的繪制等。本次設(shè)計(jì)主要是通過(guò)對(duì)塑件的形狀、尺寸及其精度要求進(jìn)行注射成型工藝的工藝分析、側(cè)向分型與抽芯機(jī)構(gòu)設(shè)計(jì),重點(diǎn)在側(cè)抽芯機(jī)構(gòu)的設(shè)計(jì)。在這過(guò)程中分析了模具受力,推出脫模機(jī)構(gòu)的設(shè)計(jì),合模導(dǎo)向機(jī)構(gòu)的設(shè)計(jì),冷卻系統(tǒng)的設(shè)計(jì)以及排氣系統(tǒng)等,并繪制完整的模具裝配總圖和主要的模具零件圖。設(shè)計(jì)中力求模具結(jié)構(gòu)設(shè)計(jì)簡(jiǎn)單、合理、實(shí)用,使得模具結(jié)構(gòu)緊湊、工作可靠,可實(shí)現(xiàn)全自動(dòng)操作。
關(guān)鍵詞:注塑模;一模12穴;型腔;導(dǎo)柱。
Abstract
Injection molding occupies a very important position in the whole manufacturingproduction, It is estimated that about one third of injection molding products mold plastic products production and more importance in the mold injection mold industry is obvious,now injection mold design and manufacture of traditional methods had failed to meet the needs of modern production development, to win the competition in the market, sustainable development, mold production must change the traditional production methods, the introduction of new technology, new thinking
This paper describes the technical characteristics of the specific mold CAD/CAE, as well as advanced manufacturing mode in the mold industry, mold on the basis of international and domestic market analysis, the domestic mold cadcae trends on the proposedapplication of computer technology as a means of secondary mold design new method. The main injection mold for forming a common method were analyzed, in order to achievethe injection molding process intelligence In the familiar basic knowledge of injection mold design based on system analysis anddesign of the overall framework of the system. We use proe software modules and plastic mold simulation module to perform a type ofmold, core pulling, each system has been designed
Daily necessity, sometimes adopt the not that high plastics of accuracy and strengths to spread to move, because the plastics has the plasticity strong, the density is small, higher than strength, the knot good luck, the chemistry stability is high, diverse characteristics of external appearance, as a result be subjected to more and more factories house and the people's fancies.The plastics industry is a newly arisen industry, is along with the development of the petroleum industry but should but living of, the plastics system piece almost have already entered each realm of the whole industry sections and people's daily lifes currently.Along with the machine industry electronics industry, aviation industry, the instrument appearance industry and usually the development of the thing industry, the plastics models the demand of make the piece more and more, the quantity request is also more and more high, this will beg model the piece of the development of the molding tool, the level of the design manufacturing also the beard is more and more high.This text also design the process to carry on elaborate to a cover molding tool.
Key words:Injection mold; Exactly 12 holes; Cavity; Guide post;
目 錄
引言 1
1 塑件總體分析 2
1.1 尺寸分析 2
1.2 材料的選擇 2
1.3 體積及質(zhì)量計(jì)算 4
1.3.1體積的計(jì)算 4
1.3.2質(zhì)量及面積的計(jì)算 4
2 型腔數(shù)目的確定 5
3 成型零部件的設(shè)計(jì) 6
3.1 型腔、型芯工作尺寸計(jì)算 6
3.1.1型腔尺寸計(jì)算 6
3.1.2型芯尺寸計(jì)算 6
3.2 成型零部件的強(qiáng)度與剛度計(jì)算 7
3.2.1剛度校核 7
3.2.2強(qiáng)度校核 7
4 分型面的選擇 7
5 澆注系統(tǒng)的設(shè)計(jì) 9
5.1 澆注系統(tǒng)的構(gòu)成 9
5.2 澆注系統(tǒng)設(shè)計(jì)原則 9
5.3 主流道的設(shè)計(jì) 9
5.3.1主流道的形狀設(shè)計(jì) 9
5.3.2主流道的尺寸設(shè)計(jì) 10
5.4 分流道的設(shè)計(jì) 11
5.4.1分流道截面的設(shè)計(jì)原則 12
5.4.2分流道截面的具體設(shè)計(jì) 12
5.4.3分流道的尺寸的設(shè)計(jì) 13
5.4.4分流道的布置形式 14
5.5 冷料穴的設(shè)計(jì) 15
6 冷卻系統(tǒng)的設(shè)計(jì) 15
6.1 模具溫度的影響 15
6.2 冷卻系統(tǒng)主要設(shè)計(jì)原則 16
6.3 冷卻回路尺寸的確定及布置 17
6.3.1水道孔徑的設(shè)計(jì) 17
6.3.2冷卻回路的布置 18
6.4 冷卻時(shí)間計(jì)算 19
6.5 用水量M的計(jì)算 20
6.6 成型周期計(jì)算 21
7 模具材料選擇 21
7.1 模具滿足工作條件要求 21
7.2 模具滿足工藝性能要求 22
7.3 模具滿足經(jīng)濟(jì)性要求 23
8 選擇注射機(jī) 23
8.1 注射機(jī)型號(hào)選取 23
8.2注射機(jī)參數(shù)的校核 25
9 模具主要參數(shù)的計(jì)算 27
9.1 脫模力的計(jì)算 27
9.2 初始脫模力 27
9.3 推桿直徑計(jì)算 28
9.4 推桿的應(yīng)力校核 28
9.5 推板的厚度計(jì)算 29
9.6 推出機(jī)構(gòu)的設(shè)計(jì) 29
9.6.1推桿的設(shè)計(jì) 29
9.6.2復(fù)位桿的設(shè)計(jì) 30
9.7 脫模方式的確定 30
10 模具結(jié)構(gòu)設(shè)計(jì) 31
10.1 結(jié)構(gòu)設(shè)計(jì)主要原則 31
10.2 模具強(qiáng)度的設(shè)計(jì) 32
10.2.1凹模的設(shè)計(jì) 32
10.2.2 嵌底式組合凹模側(cè)壁強(qiáng)度的計(jì)算 33
10.2.3 支撐板的強(qiáng)度計(jì)算 33
11 排氣系統(tǒng)的設(shè)計(jì) 34
11.1 排氣會(huì)產(chǎn)生的缺點(diǎn) 34
11.2 排氣方式及機(jī)構(gòu)的設(shè)計(jì) 35
12 模架的選擇 36
13 成型零件加工工藝規(guī)程 37
14 結(jié)束語(yǔ) 39
參考文獻(xiàn) 40
【詳情如下】【需要咨詢購(gòu)買(mǎi)全套設(shè)計(jì)請(qǐng)加QQ1459919609】
sujiantu.stp
主澆套.dwg
動(dòng)模座板.dwg
動(dòng)模板.dwg
型腔.dwg
外文翻譯.zip
定模座板.dwg
定模板.dwg
推桿.dwg
推桿固定板.dwg
推板.dwg
支撐板.dwg
文件清單.txt
筆套塑件圖.dwg
筆蓋的注塑模具裝配圖.dwg
筆蓋的注塑模具設(shè)計(jì).doc
筆蓋的注塑模具設(shè)計(jì)中期檢查表.doc
筆蓋的注塑模具設(shè)計(jì)任務(wù)書(shū).doc
筆蓋的注塑模具設(shè)計(jì)開(kāi)題報(bào)告.doc
英文原文.doc
英語(yǔ)翻譯.doc
1 in a in of is A of of is at is of a of as on of is is be by In of in of a an a of at to of An of is in of of . is of in in a of in of to In of a of in in is by of is of It is of in be 2 in by of to by a to on on of is to in of a a a of In to of of et [1] a in a of an in of is to in Yu et [2,3] to to 4] of it a to to on of as a In 990s, of D to it to in In D to of on at in of a of a A as 1(a), an on of to in a on is is to In of on In of a as 1(b),of is In to of an in of an to 3 by on an a) a of(b) a 1. 2. he AD to AD is to be to AD to of in of a to a of is In is on is to is up to In to an of is as of is in 0° ) at 5° 0° to ,=( σ0+2σ45+σ90) /4, 4 as is of in on To of is 0 m a .1 is 2. 3. 3. in a of is 1(a). As 1(a), of of 2 2 H) as of of is G) in G = of 5 at is to to be by of in to of in of a in n to of on of a 0 30 0 mm In is 00 is to 00 in is a 380 380 mm .7 is 3. 4. in a G =50 in of a 0 mm is 4. It is 4 is on is at It is is to at of to to of of to be at In to of is β 6 5] if is a is to , is of –N at as 4, 5. It is 5 to in of It is is . of at of of t is to in In to of of a 0 mm,is as of 00 kN 00 kN,a Pa as in An 00 kN in an in to at 00 kN 00 –N in In to of of at to –N, as 4, 6 is 6 of is of in of a of is to at no on of 7 5. β–N 6. at of (a) 100 (b) 600 4. n of a at so (b) a of a a in is by a –E. An of in .7 mm is 3. in of of by no is on to to a at of to at of as 7. It is 7 on 8 at of as –D –E 1(b)is of as 7, to a 7. in 8. In to a of of a of is 8. It is at of is at to in as –B, of , as (b), to be 9 to of be by by to to as in of of on of to be by or We of be by of in is to a of is to in to be to of so be on to as 9, to at of by as at to at to of 10 9. to of of is of be is in A at is by –E 1(b). is 10. a of 10. 11 11. of 12. An of of is of , as 1(b). a of in as so is to be by at of of In to of is to is to to 12 is is is to of a as 12. It is 12 In to as 13(a). in as 13(b). It is 13(b) be by a It be in if an is is is by of of as –B 1(b), is to is is to be to In to a to to as to be as 13 13. (a) b) in 14. In to result