購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
Study of Inherent Safety Mine hoist based on modern design methods
Abstract—As a modern security design, Inherent Safety means that equipment and facilities is able to contain the inherent fundamental features to prevent accidents. Mine hoist is the most important equipment in the coal production. How to achieve safe, reliable, efficient production has been the focus study at home and abroad. Inherent safety is reflected in hoist design, primarily through the design measures to improve the operation of hoist safety and reliability. In this paper, Inherent Safety theory is applied in the design of mine hoist, to proposed the design method by using the software of PRO/E??PLC, Labview etc..
Keywords-Mine hoist; Inherent Safety; PRO/E; PLC; Labview
I. INTRODUCTION
In coal production, mine hoist is the equipment to carry coal, gangue, materials, workers and equipments along the rockshaft, the only way linked underground and aboveground, known as mine throat. Mine hoist is a large-scale reciprocating machinery which has the feature of own big inertia, load changes, running speed, and wide range et al.. The advantages and disadvantages of its operating performance, not only directly affect the normal production and coal production efficiency, but also relate to equipment and personal safety. In recent years, mine hoist failures and accidents have happened at home and abroad which have paid a heavy price to coal companies. Therefore, the production technology and safety of mine hoist are higher, and its mechanical manufacturing technology and electrical control technology has been an important research area to the international machine building industry and the electric control industry.
Inherent Safety means that equipment and facilities is able to contain the inherent fundamental features to prevent accidents. Inherent Safety lies in design, through continuous improvement, to prevent accidents due to the equipment itself failures. Inherent safety is reflected in hoist design, primarily through the design measures to improve the operation of hoist safety and reliability. In this paper, Inherent Safety theory is applied in the design of mine hoist, to proposed the inherent safety design method by use the software of PRO/E PLC, Labview etc..
II. INHERENT SAFETY THEORY
The term of inherent safety originates the development of world space technology in the 1950s. The concept is widely accepted closely linked with scientific technological progress and human understanding of safety culture. The concept of inherent safety produced after the World War II which became major safety concept in many industrialized countries since the mid 20th century.
Inherent safety design as the basic method of hazard control, by selecting safe materials, process routes, mechanical equipment, devices, to eliminate or control hazards source rather than relying on "additional" security measures or management measures to control them. As inherent safety design, firstly analyze and identify hazards that may occur in system, and then choose the best methods to eliminate, control hazards, which reflected in project design.
Ⅲ. THE DESIGN OF INHERENT SAFETY MINE HOIST
Mine hoist mainly includs the working device, control system, transmission system and drag, protection systems and other components. To the inherent safety mine hoist design, mainly the mechanical system, control system and monitor system is the major part to considered.
A. In-depth investigations to find malfunction
The concept of inherent safety is required safety all the time in the product design process. That is, the equipment has little malfunction as much as possible during the operation and has long normal operation cycle length. How can design inherent safety equipment, the most important thing is understanding enough to the equipment, especially in work. After in-depth research, fully understanding the situation, try the best to reduce or eliminate the fault in the design. After in-depth understanding of research, design product.
B. Mechanical System
The traditional method of product has long design cycle, high costs. However, the virtual prototype technology has the advantage in saving the design cost, shortening the design circle, by using the method of modeling, simulation first and then builds the physical prototype. Therefore, the virtual design is the developing trends of mechanical design. In mechanical system design, the application of virtual prototype is used to design mine hoist, not only speeded up the design process, also simulated a variety of conditions to the virtual prototype to discover design faults, to improve the design, to improve mine hoist performance.
Mine hoist mechanical system is composed of spindle, roller, reducer, motor, brakes and other components. In its design, virtual design software PRO / E is applied to establish hoist prototype, application of simulation software ADAMS is used to simulate and optimize the design.
C. Control system design
Mine hoist control system includes start, run, brake, etc., the requirements in control system are:
In normal hoist operation, participation in hoist speed control, brake the hoist when reaching the destination, known as the service braking;
In case of emergency, can quickly slow down as required, brake hoist, to prevent the expansion of the accident, that is the safety braking; Participate in the hoist speed control when decelerati; To double-roller hoist, should brake the moving roller and fix roller respectively when regulating rope length, replacement level and changing rope, so that, moving roller would not move when spindle rotates with the fixed roller.
Most of mine hoists in China (more than 70%) use the traditional electric control system (tkd-a as the representative). Tkd control system is composed of relay logic circuits, large air contactors, tachometer generator etc., which is a touch control system. After years of development, tkd-a series of electric control system has formed its own characteristics, but its shortcomings are obvious. Its electrical circuit is too complicated, multi-line, causing hoist parking and accidents occurred due to electrical fault. With the computer and digital technology, to form a digital hoist control system of PLC has become possible. PLC control system has high control precision, parameter stability, simple hardware structure, self-diagnostic capability and communication networking function.
D. Monitoring system design
To ensure safe operation of the hoist, except for selecting the reasonable operation design parameters, the use of advanced control system, should also monitor the technological parameters on regular, conscientiously do performance test work to master the hoist performance, discover the defects in time, eliminate hidden danger, avoid unnecessary losses. In addition, the hoist operation state can be improved to work in the best conditions based on test data. Therefore, the hoist could work safely, reliably, have high efficiency, and extend its work life.
Virtual instrument technology is computer-based instrumentation and measurement technology, is loaded some software and hardware on the computer with similar appearance and performance of the actual independent instrument. The user operating the computer, like manipulating a especially conventional electronic devices designed theirs. The essence of virtual instrument technology is that hardware softwarized technology, take full advantage of the latest computer technology to implement and expand the functions of traditional instruments.
LabVIEW (laboratory virtual instrument engineering workbench) is a graphical programming and development environment, also known as "G" language. It is widely used by industry, academia and research laboratories, accepted as the standard data acquisition and instrument control software. LabVIEW not only provides and complies with all the functions of hardware and data acquisition cards communications of GPIB, VXI, RS-232 and RS-485 protocol, and built-in library functions support for TCP / IP, ActiveX and other software standards. The software for scientists and engineers is a programming language, it provides a simple, intuitive graphical programming mode, saves a lot of development time, has complete function, best embodied style of virtual instrument.
Ⅳ. CONCLUSIONS
In this paper, used virtual design software to design the hoist mechanical system, PLC to design control system, applied virtual instrument software-LABVIEW to design monitor system. Therefore, the mine hoist designed has good mechanical properties and safe operation, monitoring easy.
REFERENCES
[1] Weng qishu. The inherent safety and checks of cabin[J]. navigation
Technology 2006 (3):50-52. (in Chinese)
[2] Li jangbo. Study of Test System of Composite Characteristic of Devices Based on
Virtual instrument[D]. A Dissertation Submitted to Hebei University of
Engineering For the Academic Degree of Master of Engineering, 2007. (in
Chinese)
[3] Wang chengqin, Li wei , Meng baoxing et al... Random vibration testing system of
hoisting gear based on virtual instrument. Coal mine machinery, 2008(4) :118-120.
(in Chinese)
[4] Chen baozhi ??Wu min. concept and practices of inherent safety[J]. Journal of
Safety Science and Technology,2008(6):79-83. (in Chinese)
[5] Xu chenyi, Wu yongdong, Huanghe et al.. A PLC-based mine hoist control system
design [J]. LC&FA, 2008(10):52-56 (in Chinese)
基于現(xiàn)代設(shè)計(jì)方法的礦井提升機(jī)內(nèi)在安全性的研究
摘要:作為一個(gè)現(xiàn)代的安全設(shè)計(jì),內(nèi)在的安全性意味著設(shè)備和設(shè)施能夠包含防止事故發(fā)生的固有基本特征。礦山提升機(jī)是煤炭生產(chǎn)中最重要的設(shè)備。如何獲得安全、可靠、效率高的產(chǎn)品,已經(jīng)成為國(guó)內(nèi)外研究的焦點(diǎn)。內(nèi)在安全性在提升機(jī)的設(shè)計(jì)中主要體現(xiàn)在通過設(shè)計(jì)方法來提高操作提升機(jī)的安全性和可靠性。在本文中,把內(nèi)在安全性理論應(yīng)用到了礦井提升機(jī)的設(shè)計(jì)中,利用PRO/E、PLC、Labview等軟件提出了設(shè)計(jì)方法。
關(guān)鍵字:礦用提升機(jī);內(nèi)在安全性;PRO/E;PLC;Labview
Ⅰ.介紹
在煤礦生產(chǎn)中,礦井提升機(jī)是沿著巖石豎井?dāng)y帶煤炭、煤矸石、材料、工人和其他設(shè)施的設(shè)備,豎井是唯一的和地上地下連接的方式,就是我們所知的煤礦的喉嚨。礦井提升機(jī)是一種具有的大慣性、負(fù)荷變化、運(yùn)行速度快等特征的大型往復(fù)式機(jī)械。它本身操作性能的優(yōu)點(diǎn)和缺點(diǎn)不僅直接影響到正常的產(chǎn)量和煤炭生產(chǎn)效率,而且關(guān)系著設(shè)備和人身安全。近年來,在國(guó)內(nèi)外發(fā)生的礦用提升機(jī)失效和意外情況,已經(jīng)讓煤炭企業(yè)付出了沉重的代價(jià)。因此,生產(chǎn)技術(shù)和礦用提升機(jī)的安全性越高,那么它的機(jī)械制造技術(shù)與電氣控制技術(shù)就會(huì)成為一個(gè)國(guó)際機(jī)械建筑行業(yè)和電氣控制行業(yè)的重要研究領(lǐng)域。
本質(zhì)安全性意味著設(shè)備和設(shè)施能夠包含防止事故發(fā)生的本質(zhì)基本特征。本質(zhì)安全性在于設(shè)計(jì)、通過持續(xù)的改進(jìn),才能避免由于設(shè)備本身的失效而造成的事故,本質(zhì)安全性在提升機(jī)的設(shè)計(jì)中主要體現(xiàn)在通過設(shè)計(jì)方法來提高操作提升機(jī)的安全性和可靠性。在本文中,把本質(zhì)安全性理論應(yīng)用到了礦井提升機(jī)的設(shè)計(jì)中,利用PRO/E、PLC、Labview等軟件提出了設(shè)計(jì)方法。
Ⅱ.本質(zhì)安全理論
長(zhǎng)期的固有安全性源于世界空間技術(shù)在20世紀(jì)50年代的發(fā)展。這個(gè)概念被廣泛的認(rèn)為是科學(xué)技術(shù)進(jìn)步與人類對(duì)安全文化了解的密切聯(lián)系。在第二次世界大戰(zhàn)后產(chǎn)生的本質(zhì)安全性概念成為20世紀(jì)中期以來許多工業(yè)化國(guó)家的主要安全概念。
作為危險(xiǎn)控制的基本方法,本質(zhì)安全設(shè)計(jì)是通過選擇安全的材料、工藝路線、機(jī)械設(shè)備、裝置以消除或控制危險(xiǎn)源,而不是依賴“額外的”的安全措施或管理措施來控制他們。作為本質(zhì)安全設(shè)計(jì),首先應(yīng)分析并找出可能出現(xiàn)在系統(tǒng)里的危險(xiǎn),然后選擇最佳的方法來消除、控制危險(xiǎn),這個(gè)方法反映在項(xiàng)目設(shè)計(jì)中。
Ⅲ.礦用提升機(jī)的本質(zhì)安全設(shè)計(jì)
礦井提升機(jī)主要包括工作裝置、控制系統(tǒng)、傳輸系統(tǒng)和阻力、保護(hù)系統(tǒng)以及其他組成部分。在本質(zhì)安全的礦井提升機(jī)設(shè)計(jì)中,機(jī)械系統(tǒng)、控制系統(tǒng)和監(jiān)控系統(tǒng)是需要考慮的主要部分。
A:深入調(diào)查發(fā)現(xiàn)故障
本質(zhì)安全性的概念是指在產(chǎn)品的設(shè)計(jì)過程中一直需要安全性。也就是說,設(shè)備應(yīng)盡可能少的在運(yùn)行過程中出現(xiàn)故障,并且具有長(zhǎng)期的正常運(yùn)行周期。怎樣才能設(shè)計(jì)出本質(zhì)安全的設(shè)備,最重要的是能足夠了解設(shè)備,尤其是在工作的時(shí)候。經(jīng)過深入研究、充分了解情況,然后盡可能減少或消除設(shè)計(jì)中的缺陷。在深層研究的了解后,設(shè)計(jì)出產(chǎn)品。
B .機(jī)械系統(tǒng)
傳統(tǒng)的產(chǎn)品設(shè)計(jì)方法周期長(zhǎng)、成本高。然而,虛擬現(xiàn)實(shí)技術(shù)通過采用建模、仿真,然后建立物理原型的方法從而有了節(jié)約設(shè)計(jì)成本、縮短設(shè)計(jì)周期的優(yōu)勢(shì)。因此,虛擬設(shè)計(jì)是機(jī)械設(shè)計(jì)發(fā)展的必然趨勢(shì)。在機(jī)械系統(tǒng)設(shè)計(jì)中,應(yīng)用虛擬樣機(jī)來設(shè)計(jì)礦用提升機(jī),不僅提高了設(shè)計(jì)速度,而且模擬了虛擬樣機(jī)的各種情況以發(fā)現(xiàn)設(shè)計(jì)錯(cuò)誤,提高設(shè)計(jì)、改善礦井提升機(jī)的性能。
礦井提升機(jī)的機(jī)械系統(tǒng)由主軸、卷筒、減速器、電機(jī)、剎車和其他組成部分。在它的設(shè)計(jì)中,虛擬設(shè)計(jì)軟件PRO / E是用來建立提升機(jī)原型的,模擬軟件ADAMS是用來模擬和優(yōu)化設(shè)計(jì)的。
C.控制系統(tǒng)設(shè)計(jì)
礦井提升機(jī)控制系統(tǒng)包括啟動(dòng)、運(yùn)行、剎車等,控制系統(tǒng)的要求是:
在正常的提升機(jī)操作中,參與提升機(jī)的速度控制,到達(dá)目的地的時(shí)候制動(dòng)提升機(jī),稱為制動(dòng)服務(wù);
萬一發(fā)生緊急情況,可以根據(jù)要求快速慢下來,制動(dòng)提升機(jī),以防止事故的擴(kuò)大,也就是安全制動(dòng);
在減速的時(shí)候參與提升機(jī)的速度控制;
對(duì)于雙滾筒提升機(jī),在調(diào)節(jié)鋼絲繩長(zhǎng)度、更換水平和變化的鋼絲繩時(shí),應(yīng)該分別制動(dòng)活動(dòng)卷筒和固定卷筒。這樣以來,當(dāng)主軸隨固定卷筒一起轉(zhuǎn)時(shí),活動(dòng)卷筒就不能動(dòng)了。
中國(guó)的大部分礦井提升機(jī)(70%以上)使用傳統(tǒng)的電氣控制系統(tǒng)(以TKD-A作為代表)。TKD控制系統(tǒng)由邏輯電路、大型空氣接觸器、轉(zhuǎn)速發(fā)電機(jī)等部分組成,是一個(gè)觸摸控制系統(tǒng)。經(jīng)過多年的發(fā)展,TKD-A系列電動(dòng)控制系統(tǒng)已經(jīng)形成了自身的特點(diǎn),但其存在的缺陷顯而易見。其電路過于復(fù)雜、多線,由于電路故障使提升機(jī)造成停車和事故的發(fā)生。通過運(yùn)用計(jì)算機(jī)和數(shù)字技術(shù),形成一個(gè)數(shù)字化提升機(jī)的PLC控制系統(tǒng)已成為可能。PLC控制系統(tǒng)具有較高的控制精度、參數(shù)穩(wěn)定、簡(jiǎn)單的硬件結(jié)構(gòu)、自診斷能力和網(wǎng)絡(luò)通信功能。
D .監(jiān)測(cè)系統(tǒng)設(shè)計(jì)
為了確保提升機(jī)的安全運(yùn)行,除了選擇合理的操作設(shè)計(jì)參數(shù)、采用先進(jìn)的控制系統(tǒng)之外,還應(yīng)該定期監(jiān)控技術(shù)參數(shù)、時(shí)常做性能測(cè)試工作以掌握提升機(jī)性能、及時(shí)發(fā)現(xiàn)缺陷、消除隱患、避免不必要的損失。此外,通過測(cè)試數(shù)據(jù)還可以改善提升機(jī)的操作狀態(tài)達(dá)到最佳工作狀況。因此,提升機(jī)可以安全、可靠、高效率的運(yùn)行以延長(zhǎng)其運(yùn)行壽命。
虛擬儀器技術(shù)是基于計(jì)算機(jī)的儀器和測(cè)試技術(shù),被裝載一些計(jì)算機(jī)上的硬件和軟件且具有相似的外觀和性能的現(xiàn)實(shí)獨(dú)立儀器。使用這臺(tái)計(jì)算機(jī)的用戶,就像操縱了一個(gè)特殊的設(shè)計(jì)其本身的傳統(tǒng)電子設(shè)備虛擬儀器技術(shù)其本質(zhì)就是把硬件軟件化的技術(shù),充分利用先進(jìn)的電腦技術(shù)來補(bǔ)充和擴(kuò)展傳統(tǒng)儀器的功能。
LabVIEW(實(shí)驗(yàn)室虛擬儀器工程工作臺(tái))是一種圖形化程序和開發(fā)環(huán)境,也被稱為“G”的語(yǔ)言。它被廣泛地用工業(yè)、學(xué)術(shù)界和研究實(shí)驗(yàn)室,作為標(biāo)準(zhǔn)的數(shù)據(jù)采集和儀器控制軟件。LabVIEW中不僅提供和支持了所有硬件??和數(shù)據(jù)采集卡的GPIB,VXI總線,RS - 232和RS - 485通信協(xié)議,而且建立了支持TCP / IP,ActiveX和其他軟件標(biāo)準(zhǔn)的內(nèi)置庫(kù)函數(shù)。此軟件對(duì)科學(xué)家和工程師來說是一個(gè)編程語(yǔ)言,它提供了一個(gè)簡(jiǎn)單、直觀的圖形編程模式,節(jié)省了大量的開發(fā)時(shí)間,功能齊全,最佳的體現(xiàn)了虛擬儀器的類型。
Ⅳ.結(jié)論
在本文中,通過使用虛擬設(shè)計(jì)軟件設(shè)計(jì)提升機(jī)的機(jī)械系統(tǒng),通過可編程序控制器(PLC)設(shè)計(jì)控制系統(tǒng),應(yīng)用虛擬儀器軟件-LABVIEW設(shè)計(jì)監(jiān)控系統(tǒng)。因此,這種礦井提升機(jī)的設(shè)計(jì)有良好力學(xué)性能和運(yùn)行安全性和監(jiān)測(cè)方便的特點(diǎn)。
參考文獻(xiàn)
[1] Weng qishu??团摰谋举|(zhì)安全和檢查[J].
導(dǎo)航技術(shù),2006(3):50-52.(中文)
[2] Li jangbo?;谔摂M儀器的復(fù)合材料設(shè)備測(cè)試系統(tǒng)的研究[D].
一篇河北工程大學(xué)的工程碩士學(xué)位論文,2007年。(中文)
[3] Wang chengqin, Li wei, Meng baoxing等。基于虛擬儀器的
提升機(jī)齒輪隨機(jī)性振動(dòng)測(cè)試系統(tǒng)[J]。煤礦機(jī)械,2008(4):
118-120.(中文)
[4] Chen baozhi, Wu min.本質(zhì)安全性的概念和實(shí)踐[J].安全科
學(xué)雜志,2008(6):79-83.(中文)
[5] Xu chenyi, Wu yongdong, Huang he等.一個(gè)基于plc的礦井
提升機(jī)控制系統(tǒng)設(shè)計(jì)[J].LC&FA,2008(10):52-56(中文)
湖 南 科 技 大 學(xué)
英文文獻(xiàn)翻譯
學(xué) 生 姓 名: 袁弘祥
學(xué) 院: 機(jī)電工程學(xué)院
專業(yè)及班級(jí): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 號(hào): 1103010108
指導(dǎo)教師: 龔伶俐
二〇一五 年 五 月 二十八 日
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
裝
┊
┊
┊
┊
┊
訂
┊
┊
┊
┊
┊
線
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
┊
長(zhǎng) 春 大 學(xué) 畢業(yè)設(shè)計(jì)(論文)紙
開題報(bào)告
一、設(shè)計(jì)題目:
鍛造操作機(jī)與夾緊及及前提升機(jī)構(gòu)設(shè)計(jì)
二、課題研究的目的和意義
鍛造操作機(jī)是鍛造車間實(shí)現(xiàn)鍛造機(jī)械化與自動(dòng)化的重要設(shè)備,它主要用于夾持鍛件來配合主機(jī)完成鍛造工藝,也可用于坯料的裝出爐,運(yùn)輸和堆放以及夾持模具或工具進(jìn)行操作。鍛造操作機(jī)不僅對(duì)提高生產(chǎn)率和設(shè)備利用率,提高鍛件質(zhì)量和降低成本有著極其重要的作用,而且還時(shí)減輕勞動(dòng)強(qiáng)度,改善勞動(dòng)條件的重要途徑。
為了滿足鍛造操作機(jī)的鍛造工藝要求,鍛造操作機(jī)一般具有以下幾個(gè)動(dòng)作:
1. 鉗口的夾緊與松開;
2. 鉗桿的旋轉(zhuǎn);
3. 夾鉗的平行升降及傾斜;
4. 臺(tái)架回轉(zhuǎn)或夾鉗擺移;
5. 大車行走。
為了實(shí)現(xiàn)以上動(dòng)作,操作機(jī)應(yīng)具有以上五個(gè)機(jī)構(gòu)。其本體可分為夾鉗,臺(tái)架,大車三大部分。夾鉗支承在夾鉗平行升降及傾斜機(jī)構(gòu)上,它包括鉗口夾緊機(jī)構(gòu)和鉗桿旋轉(zhuǎn)機(jī)構(gòu),實(shí)現(xiàn)鉗口松夾和鉗桿旋轉(zhuǎn)動(dòng)。操作機(jī)的臺(tái)架包括夾鉗平行升降及傾斜機(jī)構(gòu),實(shí)現(xiàn)夾鉗平行升降及傾斜動(dòng)作。夾鉗在鍛造過程中承受沖擊力,故在夾鉗和臺(tái)架之間還設(shè)置了垂直緩沖裝置和水平緩沖裝置。操作機(jī)的大車支承著整個(gè)臺(tái)架,在大車上裝有大車行走機(jī)構(gòu),來驅(qū)動(dòng)大車實(shí)現(xiàn)使其前進(jìn)或后退。操作機(jī)除本體結(jié)構(gòu)外,還配有電氣系統(tǒng)和液壓系統(tǒng)作為驅(qū)動(dòng)和控制裝置。
操作機(jī)按運(yùn)行方式可分為有軌操作機(jī)和無軌操作機(jī)。有軌操作機(jī)的活動(dòng)范圍和服務(wù)的鍛造設(shè)備是確定的,一般都裝在鍛錘或鍛造液壓機(jī)旁。這種操作機(jī)在工作時(shí)比較容易與鍛錘或液壓機(jī)對(duì)中,司機(jī)操縱臺(tái)可設(shè)在機(jī)上也可設(shè)在地面上,易于實(shí)現(xiàn)遙控或與主機(jī)聯(lián)動(dòng)。無軌操作機(jī)的機(jī)動(dòng)性好,活動(dòng)范圍較大,可以為多臺(tái)設(shè)備服務(wù),既能操作鍛件,又能裝出爐,還可擔(dān)任車間內(nèi)外的運(yùn)輸工作。
操作機(jī)按驅(qū)動(dòng)方式可分為液壓傳動(dòng),機(jī)械傳動(dòng)和混合操作式。液壓傳動(dòng)操作機(jī)的各個(gè)機(jī)構(gòu)均由油缸和液壓馬達(dá)驅(qū)動(dòng),因此工作平穩(wěn),結(jié)構(gòu)緊湊,操作靈活方便,便于實(shí)現(xiàn)與主機(jī)聯(lián)動(dòng)及自動(dòng)化,但加工及安裝精度較高。機(jī)械傳動(dòng)操作機(jī)的各個(gè)動(dòng)作均由電動(dòng)機(jī)通過減速器帶動(dòng)各個(gè)工作機(jī)構(gòu)來實(shí)現(xiàn),因此結(jié)構(gòu)龐大復(fù)雜,但加工精度及安裝精度不高,容易制造?;旌蟼鲃?dòng)操作機(jī)中的鉗口松夾,夾鉗平行及傾斜機(jī)構(gòu)通常由油缸或氣缸來驅(qū)動(dòng),而大車行走,鉗桿旋轉(zhuǎn)和臺(tái)架回轉(zhuǎn)機(jī)構(gòu)由電動(dòng)機(jī)驅(qū)動(dòng),其優(yōu)缺點(diǎn)介于液壓傳動(dòng)與機(jī)械傳動(dòng)之間。
有軌操作機(jī)按夾鉗在水平面上的運(yùn)動(dòng)形式可分為直移式,擺移式和回轉(zhuǎn)式操作機(jī)。直移式操作機(jī)的夾鉗具有平行升降、傾斜及大車作前后直線運(yùn)動(dòng)。這種操作機(jī)剛性好,適合制成大噸位的操作機(jī)。擺移式操作機(jī)除能實(shí)現(xiàn)直移式操作機(jī)的動(dòng)作外,夾鉗還可以在水平面上作小角度的左右擺動(dòng)和小距離的左右平移,可完成一些輔助工作?;剞D(zhuǎn)式操作機(jī)除能實(shí)現(xiàn)直移式操作機(jī)的動(dòng)作外,夾鉗隨臺(tái)架還可在水平作360度回轉(zhuǎn),這種操作機(jī)具有較廣泛的工藝用途。
大型操作機(jī)都傾向擺移式操作機(jī)。
三、國(guó)內(nèi)外現(xiàn)狀和發(fā)展趨勢(shì)
鍛造操作機(jī)作為進(jìn)行鍛造工藝的重要設(shè)備,眾多國(guó)外公司對(duì)其進(jìn)行系統(tǒng)化研究,目前,德國(guó)DDS公司、韓國(guó)HBE PRESS公司以及捷克ZDAS公司的鍛造操作機(jī)的制造水平處在世界前列。其中,德國(guó)DDS公司和WEPUKO公司是世界著名的鍛造操作機(jī)專業(yè)研發(fā)、制造企業(yè),在重型鍛造操作機(jī)領(lǐng)域有70多年的歷史。此外,日本三菱長(zhǎng)琦生產(chǎn)的操作機(jī)因擁有告高速、高精度的機(jī)械手及控制系統(tǒng)而著稱。
國(guó)內(nèi)鍛造操作機(jī)的研究起步很晚,在一些技術(shù)方面與國(guó)外相比還有一定的差異。與萬噸壓機(jī)配套的大型鍛造操作機(jī)全部采用進(jìn)口設(shè)備,自主開發(fā)的大型鍛造操作機(jī)至今尚未問世,如中國(guó)一重與上海交大聯(lián)合開發(fā)的1600kN鍛造操作機(jī)和北方重工自主開發(fā)的2000kN鍛造操作機(jī)的整機(jī)水平還有待于進(jìn)一步驗(yàn)證。
為解決我國(guó)重大裝備制造中一批關(guān)鍵技術(shù)和共性技術(shù)問題,實(shí)現(xiàn)重大裝備及其成套技術(shù)的自主研發(fā),科技部在“十一五”國(guó)家科技支撐計(jì)劃中設(shè)立了“大型鑄鍛件制造關(guān)鍵技術(shù)及裝備的研制”項(xiàng)目,在重點(diǎn)完成的工作中明確提出“150MN自由鍛造水壓機(jī)及配套設(shè)備關(guān)鍵技術(shù)研究”和“165MN自由鍛造壓油機(jī)及配套設(shè)備關(guān)鍵技術(shù)研究”
鍛造操作機(jī)60年代前就已問世,近二、三十年發(fā)展期來。最早是在美國(guó)、原蘇聯(lián),而后在日本、英國(guó)、奧地利等國(guó)發(fā)展期來,并成為系列化產(chǎn)品進(jìn)入工業(yè)性生產(chǎn)。最早的操作機(jī)多為全機(jī)械傳動(dòng),隨著科學(xué)技術(shù)的發(fā)展,到60、70年代出現(xiàn)了混合傳動(dòng)和全液壓傳動(dòng)、結(jié)構(gòu)緊湊、操作靈活的鍛造操作機(jī)。它與水壓機(jī)、臥式徑向鍛造機(jī)和自由鍛錘配用,使主機(jī)大大的提高了生產(chǎn)效率,提高了鍛件質(zhì)量。到了80年代,各國(guó)對(duì)鍛造操作機(jī)的設(shè)計(jì)、制造、技術(shù)改造方面又有了更高的要求,不斷改進(jìn)結(jié)構(gòu)、生產(chǎn)工藝,促進(jìn)了鍛壓技術(shù)的發(fā)展。
我國(guó)的鍛造操作機(jī)起步于60年代,開始只能由某些廠家自己制造有軌操作機(jī),這些操作機(jī)結(jié)構(gòu)簡(jiǎn)單,鉗子的張合夾緊靠與吊鉗分離開的電動(dòng)方頭扳手來完成,因而夾緊鍛件不方便,用于鋼錠開坯、拔料還是可以的。隨著國(guó)民經(jīng)濟(jì)的發(fā)展,70年代開始研制出全機(jī)械傳動(dòng)和一些液壓傳動(dòng)有軌操作機(jī),載重量可達(dá)10噸,夾緊力矩25千牛米。隨后,小型液壓傳動(dòng)有軌操作機(jī)得到發(fā)展,并出現(xiàn)了液壓傳動(dòng)無軌操作機(jī)。1974年我國(guó)首次制訂了自己的鍛造操作機(jī)系列標(biāo)準(zhǔn),大力推廣液壓傳動(dòng)操作機(jī)。到了80年代全液壓有軌鍛造操作機(jī)在全國(guó)相繼出現(xiàn),90年代初期我國(guó)自行設(shè)計(jì)制造的100千牛鍛造操作機(jī)主要技術(shù)性能已達(dá)到世界80年代水平,能替代國(guó)內(nèi)外進(jìn)口同類產(chǎn)品。
目前,國(guó)外大型快鍛油壓機(jī)與操作機(jī)聯(lián)動(dòng)技術(shù)已經(jīng)成熟,而國(guó)內(nèi)生產(chǎn)的鍛造操作機(jī)還沒有100千牛以上的聯(lián)動(dòng)操作機(jī)。而100千牛鍛造操作機(jī)則屬于最新開發(fā)的聯(lián)動(dòng)型鍛造操作機(jī)。它是31.5兆牛水壓機(jī)的配套設(shè)備,用于鈦合金的鍛件生產(chǎn),也可用于配套16兆牛、20兆牛自由鍛造操作機(jī)。能夾持10噸及以下的鍛件作翻轉(zhuǎn)、升降、傾斜、側(cè)移、側(cè)擺、夾緊放松和進(jìn)退七個(gè)動(dòng)作。在和水壓機(jī)的配合下,能完成鋼錠開坯、拔長(zhǎng)、鐓粗、整圓等一系列鍛造工藝。
國(guó)外操作機(jī)的載重力矩已發(fā)展到3000千牛米,大型操作機(jī)與30000千牛自由鍛造水壓機(jī)聯(lián)動(dòng)操作,不斷的提高了水壓機(jī)生產(chǎn)能力。國(guó)外操作機(jī)大多數(shù)為液壓馬達(dá)驅(qū)動(dòng),由油缸活塞實(shí)現(xiàn)升降等運(yùn)動(dòng),其液壓系統(tǒng)由油壓泵站,電控操作閥和管路等部件組成。該系統(tǒng)安裝在大車架上,隨機(jī)行走,系統(tǒng)容易實(shí)現(xiàn)多種動(dòng)作,功率大,系統(tǒng)結(jié)構(gòu)緊湊,零部件易于實(shí)現(xiàn)標(biāo)準(zhǔn)化、系列化,系統(tǒng)批量制造成本低,傳動(dòng)結(jié)構(gòu)已多樣化。
四、畢業(yè)設(shè)計(jì)方案的擬定
為實(shí)現(xiàn)操作機(jī)應(yīng)完成的基本動(dòng)作,其相應(yīng)具有:鉗口夾緊和鉗桿旋轉(zhuǎn)機(jī)構(gòu),活動(dòng)架前后提升機(jī)構(gòu)和大車行走機(jī)構(gòu)。
操作機(jī)的本體結(jié)構(gòu)可分為夾鉗、臺(tái)架和大車三部分。夾鉗包括鉗口夾緊和鉗桿旋轉(zhuǎn)機(jī)構(gòu),臺(tái)架包括平行升降及傾斜機(jī)構(gòu),在夾鉗和臺(tái)架之間還設(shè)置有垂直緩沖和水平緩沖裝置,大車支承整個(gè)臺(tái)架和活動(dòng)架,大車行走機(jī)構(gòu)驅(qū)動(dòng)大車使其前進(jìn)或后退。
要求該操作機(jī)所具有的主要基本參數(shù)和技術(shù)參數(shù)如下:
額定夾持工件重量 1噸
夾持力矩 2噸力.米
夾持鍛件范圍 Φ140~Φ420毫米
升降鍛件高度 500毫米
傾斜角度 +6度
鉗桿旋轉(zhuǎn)速度 30轉(zhuǎn)/分
大車行走速度 45轉(zhuǎn)/分
力求控制重量 7~8噸
軌距 1500毫米
夾鉗伸出量 1400毫米
純機(jī)械結(jié)構(gòu)由電器驅(qū)動(dòng)。
在鉗口夾緊機(jī)構(gòu)中,夾鉗擬采用長(zhǎng)杠桿式結(jié)構(gòu)以盡量減小拉緊力,拉緊方式擬定為機(jī)械拉緊,采用絲杠螺母配合來實(shí)現(xiàn)圓周運(yùn)動(dòng)轉(zhuǎn)化為平行移動(dòng),鉗臂及連桿等活動(dòng)聯(lián)接處采用銷軸聯(lián)接,殼體擬采用鋼板焊接結(jié)構(gòu)。不同直徑毛坯選用不同的鉗墊來實(shí)現(xiàn)夾緊。其拉緊力及旋轉(zhuǎn)力矩由鉗桿旋轉(zhuǎn)機(jī)構(gòu)提供。
前提升機(jī)構(gòu)中,各部件布置形式為:電機(jī)通過帶制動(dòng)輪型聯(lián)軸器和相配和的制動(dòng)器以及減速器相聯(lián)接,減速器與卷繞鋼絲繩的空心卷筒通過法蘭聯(lián)接在一起。鋼絲繩把卷筒、定滑輪、動(dòng)滑輪和活動(dòng)架聯(lián)接在一起,并通過螺栓聯(lián)接與機(jī)架聯(lián)接在一起。工作時(shí),電機(jī)驅(qū)動(dòng)減速器,帶動(dòng)卷筒旋轉(zhuǎn),鋼絲繩通過定滑輪和動(dòng)滑輪卷繞在卷筒上,從而實(shí)現(xiàn)將活動(dòng)架和鉗頭抬高,同理,電機(jī)反轉(zhuǎn)帶動(dòng)卷筒反轉(zhuǎn), 從而放開鋼絲繩,實(shí)現(xiàn)將活動(dòng)架放低。在后提升高度一定的前提下,前提升可實(shí)現(xiàn)鉗頭及活動(dòng)架的小角度傾斜。
五、課題研究的時(shí)間分配:
工作量:
1. 總體設(shè)計(jì) 2. 原理圖
3. 夾緊機(jī)構(gòu)
4. 前提升機(jī)構(gòu)
5. 主要零件設(shè)計(jì)
時(shí)間安排:
3月5日——3月23日 查資料,完成文獻(xiàn)翻譯和考題報(bào)告;
3月24日—— 4月3日 總體方案設(shè)計(jì);
4月4日——4月30日 機(jī)械部分設(shè)計(jì);
5月1日——5月22日 部件及零件草圖;
5月23日——6月12日 上機(jī)繪圖;
6月13日——6月19日 完成設(shè)計(jì)(論文)說明書,40~60,要求打??;
6月20日——6月24日 評(píng)審、答辯。
六、參考文獻(xiàn)
[1] 機(jī)械設(shè)計(jì)師手冊(cè)
[2] 鍛造機(jī)械化與自動(dòng)化
[3] 鍛造生產(chǎn)機(jī)械化自動(dòng)化
[4] 馮辛安主編.機(jī)械制造裝配設(shè)計(jì).北京:機(jī)械工業(yè)出版社,2005
[5] 鍛壓機(jī)械、液壓傳動(dòng)
[6] ?起重機(jī)設(shè)計(jì)手冊(cè)
[7] 鍛壓機(jī)械液壓傳動(dòng)的設(shè)計(jì)基礎(chǔ) [8] 畢業(yè)論文撰寫規(guī)范
[9] 科技期刊上發(fā)表的相關(guān)研究方向的論文
[10] http://www.cnki.net(中國(guó)期刊網(wǎng))
共 5 頁(yè) 第 5 頁(yè)