高三數(shù)學(xué)一輪復(fù)習(xí) 7.2空間幾何體的表面積與體積課件 .ppt
《高三數(shù)學(xué)一輪復(fù)習(xí) 7.2空間幾何體的表面積與體積課件 .ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高三數(shù)學(xué)一輪復(fù)習(xí) 7.2空間幾何體的表面積與體積課件 .ppt(55頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二節(jié) 空間幾何體的表面積與體積,【知識(shí)梳理】 1.空間幾何體的側(cè)面積和表面積 (1)常見(jiàn)幾何體的側(cè)面展開(kāi)圖:,共頂點(diǎn)的三角形,若干個(gè)小梯形,扇環(huán),(2)多面體的表面積:因?yàn)槎嗝骟w的各面都是平面,所以多面體的表面積就是各個(gè)面的_________,即展開(kāi)圖的面積.,面積之和,(3)旋轉(zhuǎn)體的表(側(cè))面積:,2πr2+2πrl,2πr(r+l),2πrl,πrl,π(r′2+r2,+r′l+rl),π(r+r′)l,4πr2,2.幾何體的體積 (1)設(shè)棱(圓)柱的底面積為S,高為h,則體積V=___. (2)設(shè)棱(圓)錐的底面積為S,高為h,則體積V=_____. (3)設(shè)棱(圓)臺(tái)的上、下底面面積分別為S′,S,高為h,則體積 V=_______________. (4)設(shè)球半徑為R,則球的體積V=______.,Sh,【考點(diǎn)自測(cè)】 1.(思考)給出下列命題: ①長(zhǎng)方體的體積等于長(zhǎng)、寬、高之積; ②錐體的體積等于底面面積與高之積; ③球的體積之比等于半徑比的平方; ④臺(tái)體的體積可以轉(zhuǎn)化為兩個(gè)錐體的體積之差; ⑤直徑為1的球的表面積S=4πr2=4π. 其中正確的是( ) A.①② B.③⑤ C.①④ D.④⑤,【解析】選C.①正確.長(zhǎng)方體是一種特殊的直四棱柱,其體積 V=Sh=abc(其中a,b,c分別為長(zhǎng)方體的長(zhǎng)、寬、高); ②錯(cuò)誤.錐體的體積等于底面面積與高之積的 ③錯(cuò)誤.因?yàn)榍虻捏w積V= πR3,故球的體積之比等于半徑比的 立方; ④正確.由于臺(tái)體是由平行于錐體的底面的平面截錐體所得的 在截面與底面之間的幾何體,故其體積可轉(zhuǎn)化為兩個(gè)錐體的體 積之差; ⑤錯(cuò)誤.直徑為1的球的半徑為 故其表面積S=4πr2=,2.一個(gè)正方體的體積是27,則這個(gè)正方體的內(nèi)切球的表面積 是( ) A.10π B.9π C.8π D.6π 【解析】選B.由V正方體=a3=27得a=3,所以正方體的內(nèi)切球半徑為 則S球=4πR2=9π.,3.圓柱的底面積是S,側(cè)面展開(kāi)圖是一個(gè)正方形,那么這個(gè)圓柱的側(cè)面積是( ) A.4πS B.2πS C.πS D. 【解析】選A.底面半徑是 所以正方形的邊長(zhǎng)是 故圓柱的側(cè)面積是( )2=4πS.,4.如圖所示,一個(gè)空間幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正方形,俯視圖是一個(gè)直徑為1的圓,那么這個(gè)幾何體的全面積為( ) A. B.2π C.3π D.4π,【解析】選A.由三視圖知,該空間幾何體為圓柱,所以全面積為,5.平面α截球O的球面所得圓的半徑為1,球心O到平面α的距離為 則此球的體積為 . 【解析】球半徑 所以球的體積為 答案:,6.(2013·天津高考)已知一個(gè)正方體的所有頂點(diǎn)在一個(gè)球面上.若球的體積為 則正方體的棱長(zhǎng)為 . 【解析】設(shè)球半徑為R,因?yàn)榍虻捏w積為 所以 又由球的直徑與其內(nèi)接正方體的對(duì)角線(xiàn)相等知正方體的對(duì)角線(xiàn)長(zhǎng)為3,故其棱長(zhǎng)為 答案:,考點(diǎn)1 幾何體的表面積 【典例1】(1)(2013·重慶高考)某幾何體的三視圖如圖所示,則該幾何體的表面積為( ) A.180 B.200 C.220 D.240,(2)(2014·溫州模擬)長(zhǎng)方體的三個(gè)相鄰面的面積分別為2,3,6,這個(gè)長(zhǎng)方體的頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的表面積為 ( ) A. B.56π C.14π D.64π 【解題視點(diǎn)】(1)根據(jù)三視圖可還原原來(lái)的幾何體,然后求出該幾何體的表面積. (2)利用三個(gè)相鄰面的面積列出關(guān)于同一頂點(diǎn)引出的三條棱長(zhǎng)的方程組,求出三條棱長(zhǎng),得到球的半徑的平方,從而確定球的表面積.,【規(guī)范解答】(1)選D.由三視圖可知該 幾何體為底面為梯形的直四棱柱,如圖, 棱柱的底面為等腰梯形,高為10.等腰梯 形的上底為2,下底為8,高為4, 所以梯形的面積為 ×4=20, 由三視圖知,梯形的腰為 梯形的周長(zhǎng)為8+2+5+5=20, 所以四棱柱的表面積為20×2+20×10=240.,(2)選C.設(shè)長(zhǎng)方體的過(guò)同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c, 則 得 令球的半徑為R,則(2R)2=22+12+32=14, 所以R2= ,所以S球=4πR2=14π.,【易錯(cuò)警示】準(zhǔn)確識(shí)圖 本例第(1)題在解題過(guò)程中易誤將3作為等腰梯形的腰長(zhǎng),從而誤求結(jié)果為200.在解決三視圖問(wèn)題時(shí)一定要準(zhǔn)確識(shí)別圖形中各線(xiàn)段的長(zhǎng)度.,【互動(dòng)探究】若本例(1)中的三視圖不變,求該幾何體的體積. 【解析】由三視圖可知,該幾何體為一個(gè)放倒的四棱柱,底面為梯形,由三視圖可知該四棱柱的底面積為 ×(2+8)×4=20.高為10,故體積為20×10=200.,【規(guī)律方法】 1.幾何體表面積的求法 (1)多面體:其表面積是各個(gè)面的面積之和. (2)旋轉(zhuǎn)體:其表面積等于側(cè)面面積與底面面積的和. (3)規(guī)則幾何體:若所給的幾何體是規(guī)則的柱體、錐體或臺(tái)體,則可直接利用公式進(jìn)行求解. (4)若以三視圖的形式給出,解題的關(guān)鍵是對(duì)給出的三視圖進(jìn)行分析,從中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系,得到幾何體的直觀圖,然后根據(jù)條件求解.,2.旋轉(zhuǎn)體側(cè)面積的求法 計(jì)算旋轉(zhuǎn)體的側(cè)面積時(shí),一般采用轉(zhuǎn)化的方法來(lái)進(jìn)行,即將側(cè)面展開(kāi)化為平面圖形來(lái)解決,因此要熟悉常見(jiàn)旋轉(zhuǎn)體的側(cè)面展開(kāi)圖的形狀及平面圖形面積的求法.,【變式訓(xùn)練】一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為 .,【解析】由三視圖可知,該幾何體是一個(gè)長(zhǎng)方體內(nèi)挖去一個(gè)圓柱體,如圖所示. 長(zhǎng)方體的長(zhǎng)、寬、高分別為4,3,1,表面積為4×3×2+3×1×2+ 4×1×2=38; 圓柱的底面圓直徑為2,母線(xiàn)長(zhǎng)為1,側(cè)面積為2π×1×1=2π; 圓柱的兩個(gè)底面面積為2×π×12=2π. 故該幾何體的表面積為38+2π-2π=38. 答案:38,【加固訓(xùn)練】 1.(2013·鄭州模擬)如圖是某寶石飾物的三視圖,已知該飾物的正視圖、側(cè)視圖都是面積為 且一個(gè)內(nèi)角為60°的菱形,俯視圖為正方形,那么該飾物的表面積為( ),【解析】選D.依題意得,該飾物是由兩個(gè)完全相同的正四棱錐對(duì)接而成,正四棱錐的底面邊長(zhǎng)和側(cè)面上的高均等于菱形的邊長(zhǎng),因?yàn)榱庑蔚拿娣e為 所以菱形的邊長(zhǎng)為1,因此該飾物的表面積為8×( ×1×1)=4.,2.某幾何體的三視圖如圖所示,該幾何體的表面積是 .,【解析】由幾何體的三視圖可知,該幾何體是底面為直角梯形的直四棱柱(如圖所示). 在四邊形ABCD中,作DE⊥AB,垂足為E,則DE=4,AE=3,則AD=5.所以其表面積為2× ×(2+5)×4+2×4+4×5+4×5+4×4=92. 答案:92,3.(2013·新課標(biāo)全國(guó)卷Ⅱ)已知正四棱錐O-ABCD的體積為 底面邊長(zhǎng)為 則以O(shè)為球心,OA為半徑的球的表面積為_(kāi)___. 【解析】設(shè)正四棱錐的高為h,則 解得 高 又因?yàn)榈酌嬲叫蔚膶?duì)角線(xiàn)長(zhǎng)為 所以 所以球的表面積為4π( )2=24π. 答案:24π,考點(diǎn)2 幾何體的體積 【考情】空間幾何體的體積的求解問(wèn)題是近幾年高考熱點(diǎn),其中以三視圖為載體的空間幾何體的體積問(wèn)題備受命題者的青睞.試題主要考查體積公式的應(yīng)用.常與正方體、長(zhǎng)方體、棱錐、棱柱相結(jié)合,以選擇題、填空題為主,主要考查學(xué)生的空間想象能力和計(jì)算能力.,高頻考點(diǎn) 通 關(guān),【典例2】(1)(2013·新課標(biāo)全國(guó)卷Ⅰ)如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6cm,如果不計(jì)容器的厚度,則球的體積為( ),(2)(2013·浙江高考)已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( ) A.108cm3 B.100cm3 C.92cm3 D.84cm3,【解題視點(diǎn)】(1)結(jié)合截面圖形,構(gòu)造直角三角形,利用勾股定理列出關(guān)于球半徑的方程,求出球半徑,再利用V= πR3求出球的體積. (2)先由三視圖確定該幾何體的構(gòu)成,再利用體積公式求解.,【規(guī)范解答】(1)選A.設(shè)球的半徑為R,由勾股定理可知, R2=(R-2)2+42,解得R=5,所以球的體積V= πR3= π×53= (cm3). (2)選B.由三視圖可知原幾何體如圖所示,,【通關(guān)錦囊】,【關(guān)注題型】,【通關(guān)題組】 1.(2014·臺(tái)州模擬)一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( ) A.16 B.12 C.8 D.4,【解析】選C.由三視圖可知該幾何體是由兩個(gè)三棱柱構(gòu)成的一個(gè)組合體,其體積為V= ×2×2×2+ ×2×2×2=8.,2.(2013·北京高考)某四棱錐的三視圖如圖所示,該四棱錐的體積為 .,【解析】此棱錐底面是邊長(zhǎng)為3的正方形,高為1,所以體積為 ×32×1=3. 答案:3,3.(2014·舟山模擬)已知兩個(gè)圓錐有公共底面,且兩個(gè)圓錐的 頂點(diǎn)和底面的圓周都在同一個(gè)球面上,若圓錐底面面積是這個(gè) 球面面積的 則這兩個(gè)圓錐中,體積較小者的高與體積較大 者的高的比值為 .,【解析】如圖,設(shè)球的半徑為R, 圓錐的底面圓半徑為r,則依題意得 πr2= ×4πR2, 所以∠O′CO=30°,所以O(shè)O′= 答案:,【加固訓(xùn)練】1.(2014·玉溪模擬)已知球O的半徑為 球面上有A,B,C三點(diǎn),如果AB=AC=2,BC= 則三棱錐O-ABC的體積為 ( ) 【解析】選D.由AB=AC=2,BC= 可知△ABC為直角三角形,取BC的中點(diǎn)O′,連接OO′與O′A,如圖所示,可知OO′為錐體的高,在Rt△O′OA中,O′A= ,OA= ,所以O(shè)O′= 于是VO-ABC=,2.(2014·豫東十校聯(lián)考)某幾何體的三視圖如圖所示,則該幾何體的體積為 . 【解析】原幾何體是由圓柱的一半和球的四分之一組成,其體積為 答案:,3.(2014·南京模擬)若一個(gè)圓柱的側(cè)面展開(kāi)圖是邊長(zhǎng)為2的正方形,則此圓柱的體積為 . 【解析】設(shè)圓柱的底面半徑為r,高為h,底面積為S,體積為V,則有2πr=2?r= ,故底面面積S=πr2=π×( )2= ,故圓柱的體積V=Sh= 答案:,【巧思妙解7】利用補(bǔ)形法巧解立體幾何問(wèn)題 【典例】(2014·溫州模擬)如圖,正四面體ABCD的棱長(zhǎng)為a,則這個(gè)四面體的外接球的體積為 .,【解析】常規(guī)解法: 如圖所示,設(shè)正四面體ABCD內(nèi)接于球O,由A點(diǎn)向底面BCD作垂線(xiàn),垂足為H,連接BH,OB,則可求得 在Rt△BHO中,OH2+BH2=OB2, 所以 解得 所以 所以正四面體的外接球的體積是 答案:,巧妙解法: 可將正四面體還原成一正方體,如圖, 所以球的直徑為正方體的對(duì)角線(xiàn)長(zhǎng)①. 設(shè)正方體的棱長(zhǎng)為x,球的半徑為R,則 ②, 所以R= a.所以 答案:,【解法分析】,【小試牛刀】如圖所示,在等腰梯形ABCD中,AB=2DC=2,∠DAB= 60°,E為AB的中點(diǎn),將△ADE與△BEC分別沿ED,EC向上折起,使A,B重合,則形成的三棱錐的外接球的表面積為 . 【解析】常規(guī)解法:由已知條件知,平面圖形中AE=EB=BC=CD= DA=DE=EC=1.折疊后得到一個(gè)正四面體.作AF⊥平面DEC,垂足為F,F即為△DEC的中心.,取EC的中點(diǎn)G,連接DG,AG,過(guò)球心O作OH⊥平 面AEC,則垂足H為△AEC的中心.所以外接球 半徑可利用△OHA∽△GFA求得.因?yàn)?在△AFG和△AHO中,根據(jù)三角形相似可知, 所以 外接球的表面積 S球= 答案:,巧妙解法:如圖所示,把正四面體放在正方體 中,顯然,正四面體的外接球就是正方體的外 接球.因?yàn)檎拿骟w的棱長(zhǎng)為1, 所以正方體的棱長(zhǎng)為 所以外接球直徑 所以 所以外接球的表面積S球= 答案:,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高三數(shù)學(xué)一輪復(fù)習(xí) 7.2空間幾何體的表面積與體積課件 數(shù)學(xué) 一輪 復(fù)習(xí) 7.2 空間 幾何體 表面積 體積 課件
鏈接地址:http://m.kudomayuko.com/p-1810991.html