高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.6.1 橢圓的概念及其性質(zhì)課件(理).ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.6.1 橢圓的概念及其性質(zhì)課件(理).ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.6.1 橢圓的概念及其性質(zhì)課件(理).ppt(76頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第六節(jié) 橢 圓 第一課時(shí) 橢圓的概念及其性質(zhì),【知識(shí)梳理】 1.橢圓的定義 (1)平面內(nèi)與兩個(gè)定點(diǎn)F1,F2的距離_____等于常數(shù)(大 于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓 的_____,兩焦點(diǎn)間的距離叫做橢圓的_____.,之和,焦點(diǎn),焦距,(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c為常數(shù)且a0,c0. ①當(dāng)2a|F1F2|時(shí),M點(diǎn)的軌跡為橢圓; ②當(dāng)2a=|F1F2|時(shí),M點(diǎn)的軌跡為線段F1F2; ③當(dāng)2a|F1F2|時(shí),M點(diǎn)的軌跡不存在.,2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),,-b,b,-a,a,坐標(biāo)軸,原點(diǎn),-a,a,-b,b,(-a,0),(a,0),(0,-b),(0,b),(0,-a),(0,a),(-b,0),(b,0),2a,2b,,2c,(0,1),b2+c2,【特別提醒】 1.在求橢圓的離心率時(shí),橢圓中a,b,c之間的關(guān)系容易忽略. 2.橢圓的離心率的大小決定橢圓的扁平程度:離心率越大,橢圓越扁;離心率越小,橢圓越圓.,3.方程Ax2+By2=1(AB≠0)表示橢圓的充要條件是A0,B0且A≠B.,【小題快練】 鏈接教材 練一練 1.(選修2-1P49T2(1)改編)已知橢圓 =1的 焦點(diǎn)在x軸上,焦距為4,則m等于 ( ) A.8 B.7 C.6 D.5,【解析】選A.因?yàn)闄E圓 =1的焦點(diǎn)在x軸上. 所以 解得6m10. 因?yàn)榻咕酁?, 所以c2=m-2-10+m=4, 解得m=8.,2.(選修2-1P49T5(3)改編)已知橢圓的一個(gè)焦點(diǎn)為F(1, 0),離心率為 ,則橢圓的標(biāo)準(zhǔn)方程為 .,【解析】設(shè)橢圓的標(biāo)準(zhǔn)方程為 =1(ab0). 因?yàn)闄E圓的一個(gè)焦點(diǎn)為F(1,0),離心率e= , 所以 故橢圓的標(biāo)準(zhǔn)方程為 答案:,感悟考題 試一試 3.(2016南昌模擬)矩形ABCD中,|AB|=4,|BC|=3,則以 A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的橢圓的短軸的長(zhǎng)為 ( ) A.2 B.2 C.4 D.4,【解析】選D.依題意得|AC|=5,所以橢圓的焦距為2c= |AB|=4,長(zhǎng)軸長(zhǎng)2a=|AC|+|BC|=8,所以短軸長(zhǎng)為2b=,4.(2015全國(guó)卷Ⅰ)一個(gè)圓經(jīng)過(guò)橢圓 =1的三個(gè) 頂點(diǎn),且圓心在x軸的正半軸上,則該圓的標(biāo)準(zhǔn)方程為 .,【解析】設(shè)圓心為(a,0),則圓的方程為(x-a)2+y2=r2, 依題意得 解得a= ,r2= ,所以圓 的方程為 答案:,5.(2016三明模擬)已知橢圓 =1(ab0)的兩 焦點(diǎn)為F1,F2,以F1F2為邊作正三角形,若橢圓恰好平分 正三角形的另兩條邊,則橢圓的離心率為 .,【解析】設(shè)過(guò)左焦點(diǎn)F1的正三角形的邊交橢圓于點(diǎn)A, 則|AF1|=c,|AF2|= c,有2a=(1+ )c,所以e= 答案: -1,考向一 橢圓的定義及應(yīng)用 【典例1】(1)(2016畢節(jié)模擬)點(diǎn)M為圓P內(nèi)不同于圓 心的定點(diǎn),過(guò)點(diǎn)M作圓Q與圓P相切,則圓心Q的軌跡是 ( ) A.圓 B.橢圓 C.圓或線段 D.線段,(2)已知F1,F2是橢圓C: (ab0)的兩個(gè)焦點(diǎn), P為橢圓C上的一點(diǎn),且 若△PF1F2的面積為9, 則b= .,【解題導(dǎo)引】(1)設(shè)圓P的半徑為r,當(dāng)點(diǎn)M在定圓P內(nèi)時(shí) (非圓心),|QP|+|QM|=r為定值,可得軌跡. (2)注意到點(diǎn)P在橢圓上,則有|PF1|+|PF2|=2a,再利用 求出 的值,進(jìn)而可求得b的值.,【規(guī)范解答】(1)選B.設(shè)圓P的半徑為r,當(dāng)點(diǎn)M在定圓P內(nèi)時(shí)(非圓心),|QP|+|QM|=r為定值,軌跡為橢圓.,(2)由題意知|PF1|+|PF2|=2a, , 所以|PF1|2+|PF2|2=|F1F2|2=4c2, 所以(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, 所以2|PF1||PF2|=4a2-4c2=4b2. 所以|PF1||PF2|=2b2,,所以 = |PF1||PF2|= 2b2=b2=9. 所以b=3. 答案:3,【母題變式】 1.將本例(2)中條件“ ”“△PF1F2的面積為9” 分別改為“∠F1PF2=60”“ =3 ”,則結(jié)果如 何?,【解析】由題意得|PF1|+|PF2|=2a, 又∠F1PF2=60, 所以|PF1|2+|PF2|2-2|PF1||PF2|cos60=|F1F2|2, 所以(|PF1|+|PF2|)2-3|PF1||PF2|=4c2, 所以3|PF1||PF2|=4a2-4c2=4b2, 所以|PF1||PF2|= b2,,所以 = |PF1||PF2|sin60= 所以b=3.,2.將本例(2)中條件“△PF1F2的面積為9”去掉,試求離心率的取值范圍.,【解析】因?yàn)镻為橢圓上的一點(diǎn),且 , 所以b≤c, b2≤c2,a2-c2≤c2, ≥ ,又因?yàn)閑是橢圓的離心率, 所以 ≤e1.,【規(guī)律方法】 1.橢圓定義的應(yīng)用范圍 (1)確認(rèn)平面內(nèi)與兩定點(diǎn)有關(guān)的軌跡是否為橢圓. (2)解決與焦點(diǎn)有關(guān)的距離問(wèn)題.,2.焦點(diǎn)三角形的應(yīng)用 橢圓上一點(diǎn)P與橢圓的兩焦點(diǎn)組成的三角形通常稱(chēng)為“焦點(diǎn)三角形”,利用定義可求其周長(zhǎng);利用定義和余弦定理可求|PF1||PF2|;通過(guò)整體代入可求其面積等.,【變式訓(xùn)練】(2016南昌模擬)設(shè)F1,F2分別是橢圓E: x2+ =1(0b1)的左、右焦點(diǎn),過(guò)F1的直線l與E相交于 A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|= ( ),【解析】選C.設(shè)橢圓E: (0b1),知a=1, 因?yàn)閨AF1|+|AF2|=2a=2,|BF1|+|BF2|=2a=2, 兩式相加得|AF1|+|AF2|+|BF1|+|BF2|=4, 所以|AF2|+|BF2|=4-(|AF1|+|BF1|)=4-|AB|. 因?yàn)閨AF2|,|AB|,|BF2|成等差數(shù)列,,所以2|AB|=|AF2|+|BF2|,于是2|AB|=4-|AB|, 所以|AB|= .,【加固訓(xùn)練】 1.(2016鄭州模擬)已知橢圓 =1(0b2)的左、 右焦點(diǎn)分別為F1,F2,過(guò)F1的直線l交橢圓于A,B兩點(diǎn),若 |BF2|+|AF2|的最大值為5,則b的值是 ( ),【解析】選D.由橢圓的方程可知a=2,由橢圓的定義可 知,|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|) ≥3,由橢圓的性質(zhì)可知過(guò)橢圓焦點(diǎn)的弦中,垂直于焦點(diǎn) 所在坐標(biāo)軸的弦最短,則 =3.所以b2=3,即b= .,2.(2016蘇州模擬)已知橢圓的方程是 =1(a5), 它的兩個(gè)焦點(diǎn)分別為F1,F2,且|F1F2|=8,弦AB(橢圓上任 意兩點(diǎn)的線段)過(guò)點(diǎn)F1,則△ABF2的周長(zhǎng)為 .,【解析】因?yàn)閍5,所以橢圓的焦點(diǎn)在x軸上.因?yàn)閨F1F2| =8,所以c=4,所以a2=25+c2=41,則a= .由橢圓定義, |AF1|+|AF2|=|BF2|+|BF1|=2a,所以△ABF2的周長(zhǎng)為4a= 4 . 答案:4,3.點(diǎn)P是橢圓 =1上一點(diǎn),F1,F2是橢圓的兩個(gè)焦 點(diǎn),且△PF1F2的內(nèi)切圓半徑為1,當(dāng)P在第一象限時(shí),P點(diǎn) 的縱坐標(biāo)為 .,【解析】依題意得:|PF1|+|PF2|=10,|F1F2|=6, = (|PF1|+|PF2|+|F1F2|)1=8= |F1F2|yP=3yP,所以 yP= . 答案:,考向二 橢圓的標(biāo)準(zhǔn)方程及其應(yīng)用 【典例2】(1)若直線x-2y+2=0經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的標(biāo)準(zhǔn)方程為 ( ),(2)設(shè)F1,F2分別是橢圓E:x2+ =1(0b1)的左、右焦 點(diǎn),過(guò)點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn).若|AF1|=3|F1B|, AF2⊥x軸,則橢圓E的方程為 .,【解題導(dǎo)引】(1)可利用已知條件確定橢圓的焦點(diǎn)與頂點(diǎn),進(jìn)而確定橢圓的方程. (2)可將|AF1|=3|F1B|轉(zhuǎn)化為向量之間的關(guān)系,利用向量的坐標(biāo)得出關(guān)于b的方程,解方程即可求解.,【規(guī)范解答】(1)選C.直線與坐標(biāo)軸的交點(diǎn)為(0,1), (-2,0),由題意知當(dāng)焦點(diǎn)在x軸上時(shí),c=2,b=1, 所以a2=5,所求橢圓的標(biāo)準(zhǔn)方程為 +y2=1. 當(dāng)焦點(diǎn)在y軸上時(shí),b=2,c=1, 所以a2=5,所求橢圓標(biāo)準(zhǔn)方程為 =1.,(2)設(shè)F1(-c,0),F2(c,0),其中c= 則可設(shè)A(c,b2),B(x0,y0), 由|AF1|=3|F1B|, 可得 故 即,代入橢圓方程可得 =1,解得b2= ,故橢圓 方程為x2+ =1. 答案:x2+ y2=1,【規(guī)律方法】求橢圓標(biāo)準(zhǔn)方程的兩種常用方法 (1)定義法:根據(jù)橢圓的定義,確定a2,b2的值,結(jié)合焦點(diǎn)位置可寫(xiě)出橢圓方程.,(2)待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出a,b;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在x軸上和y軸上兩種情況討論,也可設(shè)橢圓的方程為Ax2+By2=1(A0,B0,A≠B).,【變式訓(xùn)練】(2016宜昌模擬)設(shè)θ是△ABC的一個(gè)內(nèi) 角,且sinθ+cosθ= ,x2sinθ-y2cosθ=1表示( ) A.焦點(diǎn)在x軸上的橢圓 B.焦點(diǎn)在y軸上的橢圓 C.焦點(diǎn)在x軸上的雙曲線 D.焦點(diǎn)在y軸上的雙曲線,【解析】選B.因?yàn)棣取?0,π),且sinθ+cosθ= ,兩 邊平方可得,sinθcosθ= 0,所以,θ∈ , 且|sinθ||cosθ|,所以x2sinθ-y2cosθ=1表示焦點(diǎn) 在y軸上的橢圓.,【加固訓(xùn)練】 1.已知橢圓C: =1(ab0)的左、右焦點(diǎn)為F1,F2, 離心率為 ,過(guò)F2的直線l交C于A,B兩點(diǎn),若△AF1B的 周長(zhǎng)為4 ,則C的方程為 ( ),【解析】選A.因?yàn)椤鰽F1B的周長(zhǎng)為4 ,所以4a=4 , 所以a= ,因?yàn)殡x心率為 ,所以c=1,所以b= ,所以橢圓C的方程為 =1.,2.(2016常州模擬)若方程 =1表示橢圓,則 k的取值范圍是 . 【解析】由已知得 解得3k5且k≠4. 答案:(3,4)∪(4,5),考向三 橢圓的幾何性質(zhì) 【考情快遞】,【考題例析】 命題方向1:求橢圓離心率(或范圍) 【典例3】(2015福建高考)已知橢圓 E: =1(ab0)的右焦點(diǎn)為F,短 軸的一個(gè)端點(diǎn)為M,直線l:3x-4y=0交橢 圓E于A,B兩點(diǎn).若|AF|+|BF|=4,點(diǎn)M到直線l的距離不小,于 ,則橢圓E的離心率的取值范圍是 ( ),【解題導(dǎo)引】由點(diǎn)M到直線l的距離不小于 ,可得出b 的范圍,從而求出離心率的范圍.,【規(guī)范解答】選A.不妨設(shè)左焦點(diǎn)為F2,連接AF2,BF2,由 橢圓的對(duì)稱(chēng)性可知四邊形AFBF2的對(duì)角線互相平分,所 以四邊形AFBF2為平行四邊形,所以|AF|+|BF|=|BF2|+ |BF|=2a=4,所以a=2,設(shè)M(0,b),所以d= b≥ ?b≥1, 所以e= 又e∈(0,1),所以e ∈,【易錯(cuò)警示】解答本題易出現(xiàn)以下錯(cuò)誤: 本題利用點(diǎn)到直線的距離公式,求出b的取值,易將公式記錯(cuò)而導(dǎo)致錯(cuò)誤,再者是出現(xiàn)運(yùn)算錯(cuò)誤;還有一點(diǎn)是利用橢圓中a,b,c之間的關(guān)系時(shí)易與雙曲線中a,b,c之間的關(guān)系記混出現(xiàn)錯(cuò)誤.,命題方向2:依據(jù)橢圓的性質(zhì)求值或范圍 【典例4】(2016寶雞模擬)已知橢圓 =1,A,B 是其左右頂點(diǎn),動(dòng)點(diǎn)M滿足MB⊥AB,連接AM交橢圓于點(diǎn)P, 在x軸上有異于點(diǎn)A,B的定點(diǎn)Q,以MP為直徑的圓經(jīng)過(guò)直 線BP,MQ的交點(diǎn),則點(diǎn)Q的坐標(biāo)為 .,【解題導(dǎo)引】取M的坐標(biāo),進(jìn)而得出MA,MQ的方程,從而可求出點(diǎn)Q的坐標(biāo).,【規(guī)范解答】方法一:設(shè)M(2,t),P(x0,y0),則由A,P,M 三點(diǎn)共線,得 代入 =1, 解得 kPB=,設(shè)Q(q,0),則kMQ= 解得q=0,即得Q(0,0).,方法二:設(shè)M(2,2),因?yàn)锳(-2,0),B(2,0),所以MA的方程 為x-2y+2=0, 由 解得 從而PB的斜率kPB=-1. 又PB⊥MQ,所以kMQ=1,于是直線MQ的方程為x-y=0,又Q 是直線MQ與x軸的交點(diǎn),故Q(0,0). 答案:(0,0),【技法感悟】 1.求橢圓離心率的方法 (1)直接求出a,c的值,利用離心率公式直接求解. (2)列出含有a,b,c的齊次方程(或不等式),借助于b2= a2-c2消去b,轉(zhuǎn)化為含有e的方程(或不等式)求解.,2.利用橢圓幾何性質(zhì)求值或范圍的思路 求解與橢圓幾何性質(zhì)有關(guān)的參數(shù)問(wèn)題時(shí),要結(jié)合圖形進(jìn)行分析,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系.,【題組通關(guān)】 1.(2016長(zhǎng)春模擬)橢圓 =1(ab0)的左、右 頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F2,若|AF1|, |F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為( ),【解析】選B.由題意知|AF1|=a-c,|F1F2|=2c,|F1B|= a+c,且三者成等比數(shù)列,則|F1F2|2=|AF1||F1B|,即 4c2=a2-c2,a2=5c2,所以e2= ,所以e= .,2.(2016深圳模擬)過(guò)橢圓 =1的中心任意作一 條直線交橢圓于P,Q兩點(diǎn),F是橢圓的一個(gè)焦點(diǎn),則△PQF 周長(zhǎng)的最小值是 ( ) A.14 B.16 C.18 D.20,【解析】選C.如圖,設(shè)F1為橢圓的左焦 點(diǎn),右焦點(diǎn)為F2,根據(jù)橢圓的對(duì)稱(chēng)性可知 |F1Q|=|PF2|,|OP|=|OQ|,所以△PQF1的 周長(zhǎng)為|PF1|+|F1Q|+|PQ|=|PF1|+|PF2|+2|PO|=2a+ 2|PO|=10+2|PO|,易知2|OP|的最小值為橢圓的短軸長(zhǎng), 即點(diǎn)P,Q為橢圓的上下頂點(diǎn)時(shí),△PQF1即△PQF的周長(zhǎng)取 得最小值為10+24=18.,【加固訓(xùn)練】 (2016貴陽(yáng)模擬)已知橢圓方程為 =1(ab0), A,B分別是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),M,N是橢圓上關(guān)于x軸 對(duì)稱(chēng)的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,若|k1k2| = ,則橢圓的離心率為 .,【解析】設(shè)M(x0,y0),則N(x0,-y0), 可得3a2=4c2,從而e= 答案:,3.(2016武威模擬)橢圓Г: =1(ab0)的左、 右焦點(diǎn)分別為F1,F2,焦距為2c.若直線y= (x+c)與橢 圓Г的一個(gè)交點(diǎn)M滿足∠MF1F2=2∠MF2F1,則該橢圓的離 心率等于 .,【解析】由直線方程為y= (x+c), 知∠MF1F2=60,又∠MF1F2=2∠MF2F1,所以∠MF2F1=30,MF1⊥MF2,所以|MF1|=c,|MF2|= c,所以 |MF1|+|MF2|=c+ c=2a. 即e= = -1. 答案: -1,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.6.1 橢圓的概念及其性質(zhì)課件理 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第八 平面 解析幾何 8.6 橢圓 概念 及其 性質(zhì) 課件
鏈接地址:http://m.kudomayuko.com/p-2379839.html