2019-2020年高中數(shù)學 第2章 2.2第1課時 綜合法與分析法課時作業(yè) 新人教B版選修2-2.doc
《2019-2020年高中數(shù)學 第2章 2.2第1課時 綜合法與分析法課時作業(yè) 新人教B版選修2-2.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 第2章 2.2第1課時 綜合法與分析法課時作業(yè) 新人教B版選修2-2.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 第2章 2.2第1課時 綜合法與分析法課時作業(yè) 新人教B版選修2-2 一、選擇題 1.用分析法證明問題是從所證命題的結論出發(fā),尋求使這個結論成立的( ) A.充分條件 B.必要條件 C.充要條件 D.既非充分條件又非必要條件 [答案] A 2.下面的四個不等式: ①a2+b2+c2≥ab+bc+ca; ②a(1-a)≤; ③+≥2; ④(a2+b2)(c2+d2)≥(ac+bd)2. 其中恒成立的有( ) A.1個 B.2個 C.3個 D.4個 [答案] C [解析] ∵(a2+b2+c2)-(ab+bc+ac)=[(a-b)2+(b-c)2+(c-a)2]≥0 a(1-a)-=-a2+a-=-2≤0, (a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2 ≥a2c2+2abcd+b2d2=(ac+bd)2, ∴①②④正確.故選C. 3.設x=,y=-,z=-,則x、y、z的大小順序是( ) A.x>y>z B.z>x>y C.y>z>x D.x>z>y [答案] D [解析] ∵x、y、z都是正數(shù),又x2-z2=2-(8-4)=4-6=->0,∴x>z. ∵==>1.∴z>y. ∴x>z>y.故選D. 4.若a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由零點存在性定理知,選A. 5.p=+,q=(m、n、a、b、c、d均為正數(shù)),則p、q的大小為( ) A.p≥q B.p≤q C.p>q D.不確定 [答案] B [解析] q= ≥=+=p.故選B. 6.已知函數(shù)f(x)=x,a、b∈R+,A=f,B=f(),C=f,則A、B、C的大小關系為( ) A.A≤B≤C B.A≤C≤B C.B≤C≤A D.C≤B≤A [答案] A [解析] ∵≥≥,又函數(shù)f(x)=x在(-∞,+∞)上是單調減函數(shù), ∴f≤f()≤f.故選A. 7.若x、y∈R,且2x2+y2=6x,則x2+y2+2x的最大值為( ) A.14 B.15 C.16 D.17 [答案] B [解析] 由y2=6x-2x2≥0得0≤x≤3,從而x2+y2+2x=-(x-4)2+16,∴當x=3時,最大值為15. 8.設△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,若bcos C+ccos B=asin A,則△ABC的形狀為( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定 [答案] B [解析] 由正弦定理得sinBcosC+sinCcosB=sin2A,所以,sin(B+C)=sin2A,∴sinA=sin2A,而sinA>0,∴sinA=1,A=,所以△ABC是直角三角形. 二、填空題 9.設a>0,b>0,c>0,若a+b+c=1,則++的最小值為________. [答案] 9 [解析] ∵a>0,b>0,c>0,a+b+c=1, ∴++=++ =3++++++ ≥3+2+2+2=9, 等號在a=b=c=時成立. 10.若02ab(a≠b), ∴2ab2(a≠b),故a+b最大. 簡解:不妨取a=,b=,則a+b=,2=,a2+b2=,2ab=,顯然最大為a+b. 11.設p=2x4+1,q=2x3+x2,x∈R,則p與q的大小關系是________. [答案] p≥q [解析] ∵p-q=2x4+1-(2x3+x2)=(x-1)2(2x2+2x+1), 又2x2+2x+1恒大于0,∴p-q≥0,故p≥q. 三、解答題 12.已知a、b、c∈R+,求證:≥. [證明] 要證≥, 只需證:≥2, 只需證:3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ca, 只需證:2(a2+b2+c2)≥2ab+2bc+2ca, 只需證:(a-b)2+(b-c)2+(c-a)2≥0,而這是顯然成立的, 所以≥成立. 一、選擇題 1.已知x、y為正實數(shù),則( ) A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx2lgy C.2lgxlgy=2lgx+2lgy D.2lg(xy)=2lgx2lgy [答案] D [解析] 2lg(xy)=2(lgx+lgy)=2lgx2lgy. 2.已知a>0,b>0,+=1,則a+2b的最小值為( ) A.7+2 B.2 C.7+2 D.14 [答案] A [解析] a+2b=(a+2b)=7++. 又∵a>0,b>0,∴由均值不等式可得:a+2b=7++≥7+2=7+2.當且僅當=且+=1,即3a2=2b2且+=1時等號成立,故選A. 3.若兩個正實數(shù)x、y滿足+=1,且不等式x+- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 第2章 2.2第1課時 綜合法與分析法課時作業(yè) 新人教B版選修2-2 2019 2020 年高 數(shù)學 2.2 課時 綜合法 分析 作業(yè) 新人 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-2628467.html