2019-2020年高中數(shù)學復習講義 第十章 算法初步與框圖.doc
《2019-2020年高中數(shù)學復習講義 第十章 算法初步與框圖.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學復習講義 第十章 算法初步與框圖.doc(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學復習講義 第十章 算法初步與框圖 【知識圖解】 算法 算法的描述 流程圖 偽代碼 自然語言 條 件 結(jié) 構(gòu) 循 環(huán) 結(jié) 構(gòu) 順 序 結(jié) 構(gòu) 條 件 結(jié) 構(gòu) 循 環(huán) 結(jié) 構(gòu) 輸入(出)語句 順 序 結(jié) 構(gòu) 順 序 結(jié) 構(gòu) 順 序 結(jié) 構(gòu) 【方法點撥】 1.學習算法要理解算法的含義.明確建立算法就是設計完成一件事的操作步驟.一般地說,這樣的操作步驟應該具有通用性,能處理一類問題. 2.掌握算法的三種基本結(jié)構(gòu).順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)是算法的三種基本結(jié)構(gòu).要通.具體實例了解三種基本結(jié)構(gòu)的使用范圍,通過流程圖認識它們的基本特征. 3.掌握流程圖的畫法.用流程圖表示算法具有、清晰的特點,也是高考重點考查的內(nèi)容,要予以重視.特別是循環(huán)結(jié)構(gòu)的流程圖,對判斷框中的條件與前測試還是后測試之間的關系一定要弄清楚. 4.熟悉建立算法的基本操作程序.建立算法的操作程序一般為:先探尋解決問題的方法,并用通俗的語言進行表述,再將通俗的算法語言用流程圖直觀表示,最后根據(jù)流程圖選擇適當?shù)乃惴ㄕZ句用偽代碼表示算法過程. 第1課 算法的含義 【考點導讀】 正確理解算法的含義.掌握用自然語言分步驟表達算法的方法. 高考要求對算法的含義有最基本的認識,并能解決相關的簡單問題. 【基礎練習】 1.下列語句中是算法的個數(shù)為 3個 ①從濟南到巴黎:先從濟南坐火車到北京,再坐飛機到巴黎; ②統(tǒng)籌法中“燒水泡茶”的故事; ③測量某棵樹的高度,判斷其是否是大樹; ④已知三角形的一部分邊長和角,借助正余弦定理求得剩余的邊角,再利用三角形的面積公式求出該三角 形的面積. 2.早上從起床到出門需要洗臉刷牙(5 min)、刷水壺(2 min)、燒水(8 min)、泡面(3 min)、吃飯(10 min)、 聽廣播(8 min)幾個步驟.從下列選項中選最好的一種算法 ③ . ①S1洗臉刷牙、S2刷水壺、S3燒水、S4泡面、S5吃飯、S6聽廣播 ②S1刷水壺、S2燒水同時洗臉刷牙、S3泡面、S4吃飯、S5聽廣播 ③S1刷水壺、S2燒水同時洗臉刷牙、S3泡面、S4吃飯同時聽廣播 ④S1吃飯同時聽廣播、S2泡面、S3燒水同時洗臉刷牙、S4刷水壺 3.寫出交換兩個大小相同的杯子中的液體(A水、B酒)的兩個算法. 答案:解析:算法1: S1.再找一個大小與A相同的空杯子C; S2.將A中的水倒入C中; S3.將B中的酒倒入A中; S4.將C中的水倒入B中,結(jié)束. 算法2: S1.再找兩個空杯子C和D; S2.將A中的水倒入C中,將B中的酒倒入D中; S3.將C中的水倒入B中,將D中的酒倒入A中,結(jié)束. 注意:一個算法往往具有代表性,能解決一類問題,如,可以引申為:交換兩個變量的值. 4.寫出求1+2+3+4+5+6+7的一個算法. 解析:本例主要是培養(yǎng)學生理解概念的程度,了解解決數(shù)學問題都需要算法 算法一:按照逐一相加的程序進行. 第一步 計算1+2,得到3; 第二步 將第一步中的運算結(jié)果3與3相加,得到6; 第三步 將第二步中的運算結(jié)果6與4相加,得到10; 第四步 將第三步中的運算結(jié)果10與5相加,得到15; 第五步 將第四步中的運算結(jié)果15與6相加,得到21; 第六步 將第五步中的運算結(jié)果21與7相加,得到28. 算法二:可以運用公式1+2+3+…+n=直接計算. 第一步 取n=7;第二步 計算;第三步 輸出運算結(jié)果. 點評:本題主要考查學生對算法的靈活準確應用和自然語言表達一個問題的算法的方法.算法不同,解決問題的繁簡程度也不同,我們研究算法,就是要找出解決問題的最好的算法. 【范例解析】 例1 下列關于算法的說法,正確的有 . (1)求解某一類問題的算法是惟一的 (2)算法必須在有限步驟操作之后停止 (3)算法的每一操作必須是明確的,不能有歧義或模糊(4)算法執(zhí)行后一定產(chǎn)生確定的結(jié)果 解 由于算法具有可終止性,明確性和確定性,因而(2)(3)(4)正確,而解決某類問題的算法不一定是惟一的,從而(1)錯. 例2.寫出解方程x2-2x-3=0的一個算法. 分析 本題是求一元二次方程的解的問題,方法很多,下面利用配方法,求根公式法寫出這個問題的兩個算法 算法一: (1)移項,得x2-2x=3; ① (2)①兩邊同加1并配方,得(x-1)2=4 ② (3)②式兩邊開方,得x-1=2; ③ (4)解③,得x=3或x=-1. 算法二:(1)計算方程的判別式,判斷其符號: (2)將a=1,b=-2,c= -3,代入求根公式,得 點評 比較兩種算法,算法二更簡單,步驟最少,由此可知,我們只要有公式可以利用,利用公式解決問題是最理想,合理的算法.因此在尋求算法的過程中,首先是利用公式.下面我們設計一個求一般的一元二次方程的ax2+bx+c=0根的算法如下: (1)計算(2)若(3)方程無實根;(4)若(5)方程根 例3:一個人帶三只狼和三只羚羊過河.只有一條船,同船可以容一個人和兩只動物.沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊. (1)設計安全渡河的算法; (2)思考每一步算法所遵循的相同原則是什么. 解析:(1)S1 人帶兩只狼過河. S2 人自己返回. S3 人帶兩只羚羊過河. S4 人帶一只狼返回. S5 人帶一只羚羊過河. S6 人自己返回. S7 人帶兩只狼過河. (2)在人運送動物過河的過程中,人離開岸邊時必須保證每個岸邊的羚羊數(shù)目要大于狼的數(shù)目. 點評 這是一個實際問題,生活中解決任何問題都需要算法,我們要在處理實際問題的過程中理解算法的含義,體會算法設計的思想方法. 【反饋演練】: 1.下面對算法描述正確的一項是 C . A.算法只能用偽代碼來描述 B.算法只能用流程圖來表示 C.同一問題可以有不同的算法 D.同一問題不同的算法會得到不同的結(jié)果 解析:自然語言、圖形和偽代碼都可以表示算法,只要是同一問題,不同的算法也應該有相同的結(jié)果. 2.計算下列各式中的S的值,能設計算法求解的是 ①?、?. ①;②;③ 解析:因為算法步驟具有“有限性”特點,故②不可用算法求解. 3.已知一個學生的語文成績?yōu)?9,數(shù)學成績?yōu)?6,外語成績?yōu)?9,求他的總分和平均成績的一個算法為: 第一步 取A=89,B=96,C=99; 第二步 ?、佟 ?; 第三步 ?、凇 ?; 第四步 輸出D,E. 請將空格部分(兩個)填上適當?shù)膬?nèi)容 答案:①計算總分D=A+B+C?、谟嬎闫骄煽僂= 4.寫出123456的一個算法. 答案:解析:按照逐一相乘的程序進行. 第一步 計算12,得到2; 第二步 將第一步中的運算結(jié)果2與3相乘,得到6; 第三步 將第二步中的運算結(jié)果6與4相乘,得到24; 第四步 將第三步中的運算結(jié)果24與5相乘,得到120; 第五步 將第四步中的運算結(jié)果120與6相乘,得到720; 第六步 輸出結(jié)果. 5.已知一個三角形的三邊邊長分別為2、3、4,設計一個算法,求出它的面積. 答案:解析:可利用公式 S=求解. 第一步 取a=2,b=3,c=4; 第二步 計算p=; 第三步 計算三角形的面積S=; 第四步 輸出S的值. 6. 求1734,816,1343的最大公約數(shù). 分析:三個數(shù)的最大公約數(shù)分別是每個數(shù)的約數(shù),因此也是任意兩個數(shù)的最大公約數(shù)的約數(shù),也就是說三個數(shù)的最大公約數(shù)是其中任意兩個數(shù)的最大公約數(shù)與第三個數(shù)的最大公約數(shù). 解:用“輾轉(zhuǎn)相除法”. 先求1734和816的最大公約數(shù), 1734=8162+102; 816=1028; 所以1734與816的最大公約數(shù)為102. 再求102與1343的最大公約數(shù), 1343=10213+17;102=176. 所以1343與102的最大公約數(shù)為17,即1734,816,1343的最大公約數(shù)為17. 7. 寫出用二分法求關于x的方程x2-2=0的根(精確到0.005)的算法. 第一步 令f(x)=x2-2,因為f(1)<0,f(2)>0,所以設x1=1,x2=2 第二步 令m=(x1+x2)/2,判斷f(m)是否為0,若是,則m為所求,否則,則繼續(xù)判斷f(x1)f(m)大于0還是小于0. 第三步 若f(x1)f(m) >0則令x1=m,否則x2=m. 第四步 判斷|x1-x2|<0.005是否成立?若是則x1、x2之間的任意值均為滿足條件的近似值;否則返回第二步. 點評 .區(qū)間二分法是求方程近似解的常用算法,其解法步驟為 S1 ?。踑,b]的中點x0=(a+b)/2; S2 若f(x0)=0,則x0就是方程的根,否則 若f(a)f(x0)>0,則a←x0;否則b←x0; S3 若|a-b|- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學復習講義 第十章 算法初步與框圖 2019 2020 年高 數(shù)學 復習 講義 第十 算法 初步 框圖
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.kudomayuko.com/p-2637869.html