2019-2020年高考數(shù)學(xué)競(jìng)賽平面幾何教案講義(16).doc
《2019-2020年高考數(shù)學(xué)競(jìng)賽平面幾何教案講義(16).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)競(jìng)賽平面幾何教案講義(16).doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)競(jìng)賽平面幾何教案講義(16) 一、常用定理(僅給出定理,證明請(qǐng)讀者完成) 梅涅勞斯定理 設(shè)分別是ΔABC的三邊BC,CA,AB或其延長(zhǎng)線上的點(diǎn),若三點(diǎn)共線,則 梅涅勞斯定理的逆定理 條件同上,若則三點(diǎn)共線。 塞瓦定理 設(shè)分別是ΔABC的三邊BC,CA,AB或其延長(zhǎng)線上的點(diǎn),若三線平行或共點(diǎn),則 塞瓦定理的逆定理 設(shè)分別是ΔABC的三邊BC,CA,AB或其延長(zhǎng)線上的點(diǎn),若則三線共點(diǎn)或互相平行。 角元形式的塞瓦定理 分別是ΔABC的三邊BC,CA,AB所在直線上的點(diǎn),則平行或共點(diǎn)的充要條件是 廣義托勒密定理 設(shè)ABCD為任意凸四邊形,則AB?CD+BC?AD≥AC?BD,當(dāng)且僅當(dāng)A,B,C,D四點(diǎn)共圓時(shí)取等號(hào)。 斯特瓦特定理 設(shè)P為ΔABC的邊BC上任意一點(diǎn),P不同于B,C,則有 AP2=AB2?+AC2?-BP?PC. 西姆松定理 過(guò)三角形外接圓上異于三角形頂點(diǎn)的任意一點(diǎn)作三邊的垂線,則三垂足共線。 西姆松定理的逆定理 若一點(diǎn)在三角形三邊所在直線上的射影共線,則該點(diǎn)在三角形的外接圓上。 九點(diǎn)圓定理 三角形三條高的垂足、三邊的中點(diǎn)以及垂心與頂點(diǎn)的三條連線段的中點(diǎn),這九點(diǎn)共圓。 蒙日定理 三條根軸交于一點(diǎn)或互相平行。(到兩圓的冪(即切線長(zhǎng))相等的點(diǎn)構(gòu)成集合為一條直線,這條直線稱根軸) 歐拉定理 ΔABC的外心O,垂心H,重心G三點(diǎn)共線,且 二、方法與例題 1.同一法。即不直接去證明,而是作出滿足條件的圖形或點(diǎn),然后證明它與已知圖形或點(diǎn)重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q為ΔABC內(nèi)部?jī)牲c(diǎn),∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求證:A,P,Q三點(diǎn)共線。 2面積法。 例2 ◇ABCD中,E,F(xiàn)分別是CD,BC上的點(diǎn),且BE=DF,BE交DF于P,求證:AP為∠BPD的平分線。 3.幾何變換。 例3 (蝴蝶定理)AB是⊙O的一條弦,M為AB中點(diǎn),CD,EF為過(guò)M的任意弦,CF,DE分別交AB于P,Q。求證:PM=MQ。 例4 平面上每一點(diǎn)都以紅、藍(lán)兩色之一染色,證明:存在這樣的兩個(gè)相似三角形,它們的相似比為1995,而且每個(gè)三角形三個(gè)頂點(diǎn)同色。 4.三角法。 例5 設(shè)AD,BE與CF為ΔABC的內(nèi)角平分線,D,E,F(xiàn)在ΔABC的邊上,如果∠EDF=900,求∠BAC的所有可能的值。 5.向量法。 例6 設(shè)P是ΔABC所在平面上的一點(diǎn),G是ΔABC的重心,求證:PA+PB+PC>3PG. 6.解析法。 例7 H是ΔABC的垂心,P是任意一點(diǎn),HLPA,交PA于L,交BC于X,HMPB,交PB于M,交CA于Y,HNPC交PC于N,交AB于Z,求證:X,Y,Z三點(diǎn)共線。 7.四點(diǎn)共圓。 例8 直線l與⊙O相離,P為l上任意一點(diǎn),PA,PB為圓的兩條切線,A,B為切點(diǎn),求證:直線AB過(guò)定點(diǎn)。 三、習(xí)題精選 1.⊙O1和⊙O2分別是ΔABC的邊AB,AC上的旁切圓,⊙O1與CB,CA的延長(zhǎng)線切于E,G,⊙O2與BC,BA的延長(zhǎng)線切于F,H,直線EG與FH交于點(diǎn)P,求證:PABC。 2.設(shè)⊙O的外切四邊形ABCD的對(duì)角線AC,BD的中點(diǎn)分別為E,F(xiàn),求證:E,O,F(xiàn)三點(diǎn)共線。 3.已知兩小圓⊙O1與⊙O2相外切且都與大圓⊙O相內(nèi)切,AB是⊙O1與⊙O2的一條外公切線,A,B在⊙O上,CD是⊙O1與⊙O2的內(nèi)公切線,⊙O1與⊙O2相切于點(diǎn)P,且P,C在直線AB的同一側(cè),求證:P是ΔABC的內(nèi)心。 4.ΔABC內(nèi)有兩點(diǎn)M,N,使得∠MAB=∠NAC且∠MBA=∠NBC,求證: 5.ΔABC中,O為外心,三條高AD,BE,CF相交于點(diǎn)H,直線ED和AB相交于點(diǎn)M,直線FD和AC相交于點(diǎn)N,求證:(1)OBDF,OCDE;(2)OHMN。 6.設(shè)點(diǎn)I,H分別是銳角ΔABC的內(nèi)心和垂心,點(diǎn)B1,C1分別是邊AC,AB的中點(diǎn),已知射線B1I交邊AB于點(diǎn)B2(B2≠B),射線C1I交AC的延長(zhǎng)線于點(diǎn)C2,B2C2與BC相交于點(diǎn)K,A1為ΔBHC的外心。試證:A,I,A1三點(diǎn)共線的充要條件是ΔBKB2和ΔCKC2的面積相等。 7.已知點(diǎn)A1,B1,C1,點(diǎn)A2,B2,C2,分別在直線l1,l2上 ,B2C1交B1C2于點(diǎn)M,C1A2交A1C2于點(diǎn)N,B1A2交B2A1于L。求證:M,N,L三點(diǎn)共線。 8.ΔABC中,∠C=900,∠A=300,BC=1,求ΔABC的內(nèi)接三角形(三個(gè)頂點(diǎn)分別在三條邊上的三角形)的最長(zhǎng)邊的最小值。 9.ΔABC的垂心為H,外心為O,外接圓半徑為R,頂點(diǎn)A,B,C關(guān)于對(duì)邊BC,CA,AB的對(duì)稱點(diǎn)分別為,求證:三點(diǎn)共線的充要條件是OH=2R。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年高 數(shù)學(xué) 競(jìng)賽 平面幾何 教案 講義 16
鏈接地址:http://m.kudomayuko.com/p-2675598.html