《變量間的相關(guān)關(guān)系》PPT課件.ppt
《《變量間的相關(guān)關(guān)系》PPT課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《《變量間的相關(guān)關(guān)系》PPT課件.ppt(37頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.3 變量間的相關(guān)關(guān)系 2.3.1 變量之間的相關(guān)關(guān)系 2.3.2 兩個(gè)變量的線性相關(guān),問題提出,,,1.函數(shù)是研究?jī)蓚€(gè)變量之間的依存關(guān)系的一種數(shù)量形式.對(duì)于兩個(gè)變量,如果當(dāng)一個(gè)變量的取值一定時(shí),另一個(gè)變量的取值被惟一確定,則這兩個(gè)變量之間的關(guān)系就是一個(gè)函數(shù)關(guān)系.,2.在中學(xué)校園里,有這樣一種說法:“如果你的數(shù)學(xué)成績(jī)好,那么你的物理學(xué)習(xí)就不會(huì)有什么大問題.”按照這種說法,似乎學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)之間存在著某種關(guān)系,我們把數(shù)學(xué)成績(jī)和物理成績(jī)看成是兩個(gè)變量,那么這兩個(gè)變量之間的關(guān)系是函數(shù)關(guān)系嗎?,3.我們不能通過一個(gè)人的數(shù)學(xué)成績(jī)是多少就準(zhǔn)確地?cái)喽ㄆ湮锢沓煽?jī)能達(dá)到多少,學(xué)習(xí)興趣、學(xué)習(xí)時(shí)間、教學(xué)水平等,也是影響物理成績(jī)的一些因素,但這兩個(gè)變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系.類似于這樣的兩個(gè)變量之間的關(guān)系,有必要從理論上作些探討,如果能通過數(shù)學(xué)成績(jī)對(duì)物理成績(jī)進(jìn)行合理估計(jì),將有著非常重要的現(xiàn)實(shí)意義.,變量之間的相關(guān) 關(guān)系和線性相關(guān),知識(shí)探究(一):變量之間的相關(guān)關(guān)系,思考1:考察下列問題中兩個(gè)變量之間的關(guān)系: (1)商品銷售收入與廣告支出經(jīng)費(fèi); (2)糧食產(chǎn)量與施肥量; (3)人體內(nèi)的脂肪含量與年齡. 這些問題中兩個(gè)變量之間的關(guān)系是函數(shù)關(guān)系嗎?,思考2:上述兩個(gè)變量之間的關(guān)系是一種非確定性關(guān)系,稱之為相關(guān)關(guān)系,那么相關(guān)關(guān)系的含義如何?,自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系,叫做相關(guān)關(guān)系.,知識(shí)探究(二):散點(diǎn)圖,【問題】在一次對(duì)人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):,其中各年齡對(duì)應(yīng)的脂肪數(shù)據(jù)是這個(gè)年齡人群脂肪含量的樣本平均數(shù).,思考1:對(duì)某一個(gè)人來說,他的體內(nèi)脂肪含量不一定隨年齡增長(zhǎng)而增加或減少,但是如果把很多個(gè)體放在一起,就可能表現(xiàn)出一定的規(guī)律性.觀察上表中的數(shù)據(jù),大體上看,隨著年齡的增加,人體脂肪含量怎樣變化?,思考2:為了確定年齡和人體脂肪含量之間的更明確的關(guān)系,我們需要對(duì)數(shù)據(jù)進(jìn)行分析,通過作圖可以對(duì)兩個(gè)變量之間的關(guān)系有一個(gè)直觀的印象.以x軸表示年齡,y軸表示脂肪含量,你能在直角坐標(biāo)系中描出樣本數(shù)據(jù)對(duì)應(yīng)的圖形嗎?,,思考3:上圖叫做散點(diǎn)圖,你能描述一下散點(diǎn)圖的含義嗎?,在平面直角坐標(biāo)系中,表示具有相關(guān)關(guān)系的兩個(gè)變量的一組數(shù)據(jù)圖形,稱為散點(diǎn)圖.,思考4:觀察散點(diǎn)圖的大致趨勢(shì),人的年齡的與人體脂肪含量具有什么相關(guān)關(guān)系?,思考5:在上面的散點(diǎn)圖中,這些點(diǎn)散布在從左下角到右上角的區(qū)域,對(duì)于兩個(gè)變量的這種相關(guān)關(guān)系,我們將它稱為正相關(guān).一般地,如果兩個(gè)變量成正相關(guān),那么這兩個(gè)變量的變化趨勢(shì)如何?,思考6:如果兩個(gè)變量成負(fù)相關(guān),從整體上看這兩個(gè)變量的變化趨勢(shì)如何?其散點(diǎn)圖有什么特點(diǎn)?,一個(gè)變量隨另一個(gè)變量的變大而變小,散點(diǎn)圖中的點(diǎn)散布在從左上角到右下角的區(qū)域.,思考7:你能列舉一些生活中的變量成正相關(guān)或負(fù)相關(guān)的實(shí)例嗎?,理論遷移,例1 在下列兩個(gè)變量的關(guān)系中,哪些是相關(guān)關(guān)系? ①正方形邊長(zhǎng)與面積之間的關(guān)系; ②作文水平與課外閱讀量之間的關(guān)系; ③人的身高與年齡之間的關(guān)系; ④降雪量與交通事故的發(fā)生率之間的關(guān)系.,例2 以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):,畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖,并指出銷售價(jià)格與房屋面積這兩個(gè)變量是正相關(guān)還是負(fù)相關(guān).,,1.對(duì)于兩個(gè)變量之間的關(guān)系,有函數(shù)關(guān)系和相關(guān)關(guān)系兩種,其中函數(shù)關(guān)系是一種確定性關(guān)系,相關(guān)關(guān)系是一種非確定性關(guān)系.,3.一般情況下兩個(gè)變量之間的相關(guān)關(guān)系成正相關(guān)或負(fù)相關(guān),類似于函數(shù)的單調(diào)性.,2.散點(diǎn)圖能直觀反映兩個(gè)相關(guān)變量之間的大致變化趨勢(shì),利用計(jì)算機(jī)作散點(diǎn)圖是簡(jiǎn)單可行的辦法.,小結(jié)一:,觀察人體的脂肪含量百分比和年齡的樣本數(shù)據(jù)的散點(diǎn)圖,這兩個(gè)相關(guān)變量成正相關(guān).我們需要進(jìn)一步考慮的問題是,當(dāng)人的年齡增加時(shí),體內(nèi)脂肪含量到底是以什么方式增加呢?對(duì)此,我們從理論上作些研究.,回歸直線及其方程,知識(shí)探究(一):回歸直線,思考1:一組樣本數(shù)據(jù)的平均數(shù)是樣本數(shù)據(jù)的中心,那么散點(diǎn)圖中樣本點(diǎn)的中心如何確定?它一定是散點(diǎn)圖中的點(diǎn)嗎?,思考2:在各種各樣的散點(diǎn)圖中,有些散點(diǎn)圖中的點(diǎn)是雜亂分布的,有些散點(diǎn)圖中的點(diǎn)的分布有一定的規(guī)律性,年齡和人體脂肪含量的樣本數(shù)據(jù)的散點(diǎn)圖中的點(diǎn)的分布有什么特點(diǎn)?,,,這些點(diǎn)大致分布在一條直線附近.,思考3:如果散點(diǎn)圖中的點(diǎn)的分布,從整體上看大致在一條直線附近,則稱這兩個(gè)變量之間具有線性相關(guān)關(guān)系,這條直線叫做回歸直線.對(duì)具有線性相關(guān)關(guān)系的兩個(gè)變量,其回歸直線一定通過樣本點(diǎn)的中心嗎?,,,思考4:對(duì)一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù),你認(rèn)為其回歸直線是一條還是幾條?,,思考5:在樣本數(shù)據(jù)的散點(diǎn)圖中,能否用直尺準(zhǔn)確畫出回歸直線?借助計(jì)算機(jī)怎樣畫出回歸直線?,,知識(shí)探究(二):回歸方程,在直角坐標(biāo)系中,任何一條直線都有相應(yīng)的方程,回歸直線的方程稱為回歸方程.對(duì)一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù),如果能夠求出它的回歸方程,那么我們就可以比較具體、清楚地了解兩個(gè)相關(guān)變量的內(nèi)在聯(lián)系,并根據(jù)回歸方程對(duì)總體進(jìn)行估計(jì).,思考1:回歸直線與散點(diǎn)圖中各點(diǎn)的位置應(yīng)具有怎樣的關(guān)系?,整體上最接近,,思考2:對(duì)于求回歸直線方程,你有哪些想法?,,思考3:對(duì)一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),設(shè)其回歸方程為 可以用哪些數(shù)量關(guān)系來刻畫各樣本點(diǎn)與回歸直線的接近程度?,思考4:為了從整體上反映n個(gè)樣本數(shù)據(jù)與回歸直線的接近程度,你認(rèn)為選用哪個(gè)數(shù)量關(guān)系來刻畫比較合適?,思考5:根據(jù)有關(guān)數(shù)學(xué)原理分析,當(dāng) 時(shí),總體偏差 為最小,這樣 就得到了回歸方程,這種求回歸方程的方法叫做最小二乘法.回歸方程 中,a,b的幾何意義分別是什么?,思考6:利用計(jì)算器或計(jì)算機(jī)可求得年齡和人體脂肪含量的樣本數(shù)據(jù)的回歸方程為 ,由此我們可以根據(jù)一個(gè)人個(gè)年齡預(yù)測(cè)其體內(nèi)脂肪含量的百分比的回歸值.若某人37歲,則其體內(nèi)脂肪含量的百分比約為多少?,,20.9%,理論遷移,例 有一個(gè)同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對(duì)熱飲銷售的影響,經(jīng)過統(tǒng)計(jì),得到一個(gè)賣出的飲料杯數(shù)與當(dāng)天氣溫的對(duì)比表:,(1)畫出散點(diǎn)圖; (2)從散點(diǎn)圖中發(fā)現(xiàn)氣溫與熱飲杯數(shù)之 間關(guān)系的一般規(guī)律; (3)求回歸方程; (4)如果某天的氣溫是2℃,預(yù)測(cè)這天賣出的熱飲杯數(shù).,,,當(dāng)x=2時(shí),y=143.063.,小結(jié)二:,1.求樣本數(shù)據(jù)的線性回歸方程,可按下列步驟進(jìn)行:,第一步,計(jì)算平均數(shù) ,,第二步,求和 ,,第三步,計(jì)算,第四步,寫出回歸方程,2.回歸方程被樣本數(shù)據(jù)惟一確定,各樣本點(diǎn)大致分布在回歸直線附近.對(duì)同一個(gè)總體,不同的樣本數(shù)據(jù)對(duì)應(yīng)不同的回歸直線,所以回歸直線也具有隨機(jī)性.,3.對(duì)于任意一組樣本數(shù)據(jù),利用上述公式都可以求得“回歸方程”,如果這組數(shù)據(jù)不具有線性相關(guān)關(guān)系,即不存在回歸直線,那么所得的“回歸方程”是沒有實(shí)際意義的.因此,對(duì)一組樣本數(shù)據(jù),應(yīng)先作散點(diǎn)圖,在具有線性相關(guān)關(guān)系的前提下再求回歸方程.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 變量間的相關(guān)關(guān)系 變量 相關(guān) 關(guān)系 PPT 課件
鏈接地址:http://m.kudomayuko.com/p-2983062.html