人教A版必修4《平面向量應(yīng)用舉例》同步練習(xí)(B)含答案.doc
《人教A版必修4《平面向量應(yīng)用舉例》同步練習(xí)(B)含答案.doc》由會員分享,可在線閱讀,更多相關(guān)《人教A版必修4《平面向量應(yīng)用舉例》同步練習(xí)(B)含答案.doc(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
專題十平面向量應(yīng)用舉例 (B卷) (測試時(shí)間:120分鐘 滿分:150分) 第Ⅰ卷(共60分) 一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1.在中,若,則一定是( ). A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定 【答案】C 【解析】由于,化簡得,因此.選C. 2.【2018屆南寧市高三畢業(yè)班摸底】已知O是ΔABC內(nèi)部一點(diǎn),OA+OB+OC=0,AB?AC=2且∠BAC=60,則ΔOBC的面積為( ) A. 33 B. 3 C. 32 D. 23 【答案】A 3.已知△ABC的外接圓的圓心為O,半徑為1,若=0,則△AOC的面積為( ) A. B. C. D. 【答案】A 【解析】由題設(shè)得:,所以,選A. 4. 的三個(gè)內(nèi)角成等差數(shù)列,且,則的形狀為 ( ) A、鈍角三角形 B、等邊三角形 C、直角三角形 D、等腰直角三角形 【答案】B 【解析】 由題成等差數(shù)列,則;,由,可得; 為等腰三角形,綜上可得;等邊三角形. 5.如圖,正方形中,為的中點(diǎn),若,則的值為( ) A. B. C.1 D.-1 【答案】A 6.已知,,為坐標(biāo)原點(diǎn),點(diǎn)C在∠AOB內(nèi),且,設(shè),則的值為( ) A. B. C. D. 【答案】C. 【解析】如圖所示,∵,∴設(shè),,又∵,, ∴,∴. 7.如圖,正方形中,分別是的中點(diǎn),若,則 ( ) A.2 B. C. D. 【答案】D 【解析】設(shè)正方形邊長為,以為原點(diǎn)建立平面直角坐標(biāo)系,則,,依題意,,即,解得. 8. 已知點(diǎn)P是圓x2+y2=4上的動(dòng)點(diǎn),點(diǎn)A,B,C是以坐標(biāo)原點(diǎn)為圓心的單位圓上的動(dòng)點(diǎn),且AB?BC=0,則|PA+PB+PC|的最小值為( ) A. 4 B. 5 C. 6 D. 7 【答案】B 【解析】由題設(shè)AB?BC=0推知 AC是圓的直徑,則OA+OC=0,所以PA+PB+PC= |PO+OA+PO+OC+PO+OB|=|3PO+OB|=36+6PO?OB+1=37+12cosα,故cosα=-1時(shí),|PA+PB+PC|min=37-12=5,應(yīng)選答案B. 9. 設(shè)為的外心,且,則的內(nèi)角的值為( ) A. B. C. D. 【答案】C 【解析】 設(shè)外接圓的半徑為R, ∵, ∴移項(xiàng)得=?, ∴=(?)2, ∴169R2+120?=169R2, ∴?=0,∴∠AOB=, ∵根據(jù)圓心角等于同弧所對的圓周角的關(guān)系如圖: 所以△ABC中的內(nèi)角C值為. 故選:C. 10. 已知O是銳角△ABC的外心,若(x,y∈R),則( ) 【答案】C 11.在中,,如果不等式恒成立,則實(shí)數(shù)的取值范圍是( ) A. B. C. D. 【答案】C. 【解析】在直角三角形ABC中,易知,由,得,即,解得,故選C. 12.已知和是平面上的兩個(gè)單位向量,且,,若O為坐標(biāo)原點(diǎn),均為正常數(shù),則的最大值為 ( ) A. B. C. D. 【答案】A 【解析】由可得,,所以的最大值為. 第II卷(共90分) 二、填空題(本大題共4小題,每小題5分,共20分。把答案填在題中的橫線上。) 13.【2018屆江蘇省徐州市高三上學(xué)期期中】如圖,在半徑為2的扇形AOB中,∠AOB=90°,P為AB上的一點(diǎn),若OP?OA=2,則OP?AB的值為______. 【答案】-2+23 【解析】由OP?OA=2得22cos∠AOP=2?cos∠AOP=12?∠AOP=π3 以O(shè)為坐標(biāo)原點(diǎn),OA為x軸建立直角坐標(biāo)系,則P(1,3),A(2,0),B(0,2) ∴OP?AB=(1,3)?(-2,2)=23-2 14. 已知在直角三角形中,,,點(diǎn)是斜邊上的一個(gè)三等分點(diǎn),則 . 【答案】4. 【解析】由題意可建立如圖所示的坐標(biāo)系,可得,,或, 所以可得或,,, 所以, 所以或.故應(yīng)填4. 15.已知為等邊三角形內(nèi)一點(diǎn),且滿足 ,若三角形與三角形的面積之比為,則實(shí)數(shù)的值為________. 【答案】 【解析】 不妨設(shè)等邊三角形的邊長為,以中點(diǎn)為原點(diǎn)、為軸,中線為軸,建立平面直角坐標(biāo)系,設(shè)點(diǎn),則,代入等式,得,又,則三角形與的高分別為,由兩個(gè)三角形面積比得,解得或,經(jīng)檢驗(yàn)當(dāng)時(shí),點(diǎn)在三角形外,不合題意,所以. 16.【2018屆全國名校大聯(lián)考高三第二次聯(lián)考】已知的三邊垂直平分線交于點(diǎn), 分別為內(nèi)角的對邊,且,則的取值范圍是__________. 【答案】 【解析】 如圖,延長交的外接圓與點(diǎn),連接,則 所以 , 又, 把代入得, 又,所以, 把代入得的取值范圍是. 三、解答題 (本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.) 17.(本小題10分)△ABC中,|AB|=10,|AC|=15,∠BAC=,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E在直線AC上,且,直線CD與BE相交于點(diǎn)P,求線段AP的長. 【答案】 【解析】如圖, A D B E C P 于是,解得,即 ∴==37. 故. 18.(本小題12分)已知是邊長為4的正三角形,D、P是內(nèi)部兩點(diǎn),且滿足,求的面積. 【答案】. 19.(本小題12分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量,又點(diǎn), ,(). (Ⅰ)若,且,求向量; (Ⅱ)若向量與向量共線,當(dāng),且取最大值4時(shí),求. 【答案】(1)或 (2)="32 " 【解析】解: 又,得 或……………….5 與向量共線, …………….8 對稱軸方程: 由,得,此時(shí) ="32 " ……………………………11 綜上得=32. 20.(本小題12分)已知中,, 為角分線. (Ⅰ)求的長度; (Ⅱ)過點(diǎn)作直線交于不同兩點(diǎn),且滿足,求證:. 【答案】(Ⅰ);(Ⅱ)詳見解析. 【解析】 (1)由角分線定理可得, , 所以. (2),所以. 21.(本小題12分)如圖,平面直角坐標(biāo)系中,已知向量,,且。 (1)求與間的關(guān)系; (2)若,求與的值及四邊形的面積. 【答案】(1);(2)或,. 【解析】 (1)由題意得, 因?yàn)?,所以,即?(2)由題意得, 因?yàn)?,所以即,即?由①②得或 當(dāng)時(shí),,,則 當(dāng)時(shí),,,則 所以或,四邊形的面積為16. 22.(本小題12分)【浙江省9 1高中聯(lián)盟期中聯(lián)考】如下圖,梯形, , , , 為中點(diǎn), . (Ⅰ)當(dāng)時(shí),用向量, 表示的向量; (Ⅱ)若(為大于零的常數(shù)),求的最小值 并指出相應(yīng)的實(shí)數(shù)的值. 【答案】(Ⅰ)(Ⅱ)見解析 【解析】試題分析:(Ⅰ) (Ⅱ),由, ⑴ 當(dāng)時(shí), , ;⑵當(dāng)時(shí), ,此時(shí). 試題解析: 解:(Ⅰ)連,則 ⑴ 當(dāng)時(shí), , 此時(shí), ; ⑵ 當(dāng)時(shí), ,此時(shí).- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
2 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 平面向量應(yīng)用舉例 人教 必修 平面 向量 應(yīng)用 舉例 同步 練習(xí) 答案
鏈接地址:http://m.kudomayuko.com/p-3114647.html