2019年高考數(shù)學二輪復(fù)習 統(tǒng)計與統(tǒng)計案例.doc
《2019年高考數(shù)學二輪復(fù)習 統(tǒng)計與統(tǒng)計案例.doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學二輪復(fù)習 統(tǒng)計與統(tǒng)計案例.doc(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019年高考數(shù)學二輪復(fù)習 統(tǒng)計與統(tǒng)計案例 1.(xx四川高考)在“世界讀書日”前夕,為了了解某地5 000名居民某天的閱讀時間,從中抽取了200名居民的閱讀時間進行統(tǒng)計分析.在這個問題中,5 000名居民的閱讀時間的全體是( ) A.總體 B.個體 C.樣本的容量 D.從總體中抽取的一個樣本 【解析】 5 000名居民的閱讀時間的全體為總體,故選A. 【答案】 A 2.(xx重慶高考)某中學有高中生3 500人,初中生1 500人.為了解學生的學習情況,用分層抽樣的方法從該校學生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為( ) A.100 B.150 C.200 D.250 【解析】 樣本抽取比例為=,該???cè)藬?shù)為1 500+3 500=5 000,則=,故n=100,選A. 【答案】 A 3.(xx湖北高考)根據(jù)如下樣本數(shù)據(jù) x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0 得到的回歸方程為=bx+a,則( ) A.a(chǎn)>0,b>0 B.a(chǎn)>0,b<0 C.a(chǎn)<0,b>0 D.a(chǎn)<0,b<0 【解析】 回歸直線方程過中心點(5.5,1.5),即1.5=5.5b+a, 由題意,兩個變量負相關(guān),b<0,∴a>0,故選B. 【答案】 B 4.(xx廣東高考)某車間20名工人年齡數(shù)據(jù)如下表: 年齡(歲) 工人數(shù)(人) 19 1 28 3 29 3 30 5 31 4 32 3 40 1 合計 20 (1)求這20名工人年齡的眾數(shù)與極差; (2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖; (3)求這20名工人年齡的方差. 【解】 (1)由題可知,這20名工人年齡的眾數(shù)是30,極差是40-19=21. (2)這20名工人年齡的莖葉圖如圖所示: (3)這20名工人年齡的平均數(shù)為=(19+328+329+530+431+332+40)=30, ∴這20名工人年齡的方差為s2= (xi-)2===12.6. 從近三年高考來看,該部分高考命題的熱點考向為: 1.隨機抽樣 ①隨機抽樣問題與實際生活緊密相連,是高考考查的熱點之一.主要考查系統(tǒng)抽樣中號碼的確定和分層抽樣中各層人數(shù)的確定. ②多以選擇題和填空題的形式呈現(xiàn),屬容易題. 2.用樣本估計總體 ①該考向重點考查樣本特征數(shù)的計算,樣本頻率分布直方圖和莖葉圖等知識.特別是莖葉圖是新課標中的新增內(nèi)容,與實際生活聯(lián)系密切,可方便處理數(shù)據(jù),是高考中新的熱點. ②多以選擇題、填空題的形式考查,有時也出現(xiàn)在解答題中,屬容易題. 3.線性回歸分析 ①線性回歸分析是新增內(nèi)容,在現(xiàn)實生活中有著廣泛的應(yīng)用,應(yīng)引起重視. ②多以選擇題、填空題的形式考查,有時也出現(xiàn)在解答題中,屬中、低檔題目. 4.獨立性檢驗 ①獨立性檢驗也是新增內(nèi)容,在現(xiàn)實生活中有著廣泛的應(yīng)用,近幾年許多省的高考題涉及本考向,應(yīng)引起關(guān)注. ②既可以以選擇題、填空題的形式考查,也可以以解答題的形式呈現(xiàn),屬中、低檔題目. 【例1】 (1)(xx天津高考)某大學為了解在校本科生對參加某項社會實踐活動的意向,擬采用分層抽樣的方法,從該校四個年級的本科生中抽取一個容量為300的樣本進行調(diào)查.已知該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為4∶5∶5∶6,則應(yīng)從一年級本科生中抽取________名學生. (2)(xx廣東高考)為了解1 000名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本 ,則分段的間隔為( ) A.50 B.40 C.25 D.20 【解析】 (1)由題意知應(yīng)抽取人數(shù)為300=60. (2)由=25,可得分段的間隔為25.故選C. 【答案】 (1)60 (2)C 【規(guī)律方法】 解答與抽樣方法有關(guān)的問題時應(yīng)注意: (1)要深刻理解各種抽樣方法的特點和實施步驟. (2)熟練掌握系統(tǒng)抽樣中被抽個體號碼的確定方法. (3)熟練掌握分層抽樣中各層人數(shù)的計算方法. 注意:抽樣方法常和概率、頻率分布直方圖等知識結(jié)合在一起考查. [創(chuàng)新預(yù)測] 1.(1)(xx湖南高考)某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件、80件、60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=( ) A.9 B.10 C.12 D.13 (2)(xx江西高考)總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( ) 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A.08 B.07 C.02 D.01 【解析】 (1)根據(jù)分層抽樣的特點,用比例法求解.依題意得=,故n=13. (2)由隨機數(shù)表法的隨機抽樣的過程可知選出的5個個體是08,02,14,07,01,所以第5個個體的編號是01. 【答案】 (1)D (2)D 【例2】 (xx北京高考)從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖: 組號 分組 頻數(shù) 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7 [12,14) 6 8 [14,16) 2 9 [16,18) 2 合計 100 (1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的概率; (2)求頻率分布直方圖中的a,b的值; (3)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的100名學生該周課外閱讀時間的平均數(shù)在第幾組.(只需寫出結(jié)論) 【解】 (1)根據(jù)頻數(shù)分布表,100名學生中課外閱讀時間不少于12小時的學生共有6+2+2=10名,所以樣本中的學生課外閱讀時間少于12小時的頻率是1-=0.9. 從該校隨機選取一名學生,估計其課外閱讀時間少于12小時的概率為0.9. (2)課外閱讀時間落在組[4,6)的有17人,頻率為0.17,所以a===0.085. 課外閱讀時間落在組[8,10)的有25人,頻率為0.25,所以b===0.125. (3)樣本中的100名學生課外閱讀時間的平均數(shù)在第4組. 【規(guī)律方法】 1.用樣本估計總體時應(yīng)注意的問題: (1)理解在抽樣具有代表性的前提下,可以用樣本的頻率分布估計總體的頻率分布,用樣本的特征數(shù)估計總體的特征數(shù),這是統(tǒng)計的基本思想. (2)反映樣本數(shù)據(jù)分布的主要方式,一個是頻率分布表,一個是頻率分布直方圖.要學會根據(jù)頻率分布直方圖估計總體的概率分布以及總體的特征數(shù),特別是均值、眾數(shù)和中位數(shù). 2.樣本數(shù)字特征及莖葉圖: (1)要掌握好樣本均值和方差的實際意義,并在具體的應(yīng)用問題中會根據(jù)所計算出的樣本數(shù)據(jù)的均值和方差對實際問題作出解釋. (2)莖葉圖是表示樣本數(shù)據(jù)分布的一種方法,其特點是保留了所有的原始數(shù)據(jù),這是莖葉圖的優(yōu)勢. [創(chuàng)新預(yù)測] 2.(1)(xx福建高考)某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據(jù)此估計,該模塊測試成績不少于60分的學生人數(shù)為( ) A.588 B.480 C.450 D.120 (2)(xx山東高考)將某選手的9個得分去掉1個最高分,去掉1個最低分,7個剩余分數(shù)的平均分為91,現(xiàn)場作的9個分數(shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認,在圖中以x表示: 8 7 7 9 4 0 1 0 x 9 1 則7個剩余分數(shù)的方差為( ) A. B. C.36 D. 【解析】 (1)先求出頻率,再求樣本容量. 不少于60分的學生的頻率為 (0.030+0.025+0.015+0.010)10=0.8, ∴該模塊測試成績不少于60分的學生人數(shù)應(yīng)為6000.8=480.故選B. (2)利用平均數(shù)為91,求出x的值,利用方差的定義,計算方差. 根據(jù)莖葉圖,去掉1個最低分87,1個最高分99, 則[87+94+90+91+90+(90+x)+91]=91, ∴x=4. ∴s2=[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=. 【答案】 (1)B (2)B 【例3】 (xx全國新課標Ⅱ高考)某地區(qū)xx年至xx年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表: 年份 xx xx xx xx 2011 xx xx 年份代號t 1 2 3 4 5 6 7 人均純收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (1)求y關(guān)于t的線性回歸方程; (2)利用(1)中的回歸方程,分析xx年至xx年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)xx年農(nóng)村居民家庭人均純收入. 附:回歸直線的斜率和截距的最小二乘估計公式分別為: =,=-. 【解】 (1)由所給數(shù)據(jù)計算得 =(1+2+3+4+5+6+7)=4, =(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3 (ti-)2=9+4+1+0+1+4+9=28, (ti-)(yi-)=(-3)(-1.4)+(-2)(-1)+(-1)(-0.7)+00.1+10.5+20.9+31.6=14, ===0.5, =-=4.3-0.54=2.3, 所求回歸方程為=0.5t+2.3. (2)由(1)知,=0.5>0,故xx至xx年該地區(qū)農(nóng)村居民家庭人均純收入逐年增加,平均每年增加0.5千元. 將xx年的年份代號t=9代入(Ⅰ)中的回歸方程,得=0.59+2.3=6.8, 故預(yù)測該地區(qū)xx年農(nóng)村居民家庭人均純收入為6.8千元. 【規(guī)律方法】 進行線性回歸分析時應(yīng)注意的問題 (1)正確理解計算b,a的公式和準確的計算,是求回歸直線方程的關(guān)鍵. (2)在分析兩個變量的相關(guān)關(guān)系時,可根據(jù)樣本數(shù)據(jù)作出散點圖來確定兩個變量之間是否具有相關(guān)關(guān)系,若具有線性相關(guān)關(guān)系,則可通過線性回歸方程估計和預(yù)測變量的值. (3)在散點圖中,若所有點大部分都集中在斜向上(自左向右看)的直線的附近,則為正相關(guān);若大部分都集中在斜向下(自左向右看)的直線的附近,則為負相關(guān). [創(chuàng)新預(yù)測] 3.(xx重慶高考)從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得i=80,i=20,iyi=184,=720. (1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a; (2)判斷變量x與y之間是正相關(guān)還是負相關(guān); (3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄. 附:線性回歸方程y=bx+a中, b=,a=-b, 其中,為樣本平均值.線性回歸方程也可寫為=x+. 【解】 (1)由題意知n=10,=i==8, =i==2, 又lxx=-n2=720-1082=80, lxy=iyi-n =184-1082=24, 由此得b===0.3,a=-b=2-0.38=-0.4, 故所求線性回歸方程為y=0.3x-0.4. (2)由于變量y的值隨x值的增加而增加(b=0.3>0),故x與y之間是正相關(guān). (3)將x=7代入回歸方程可以預(yù)測該家庭的月儲蓄為y=0.37-0.4=1.7(千元). 【例4】 (xx遼寧高考)某大學餐飲中心為了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示: 喜歡甜品 不喜歡甜品 合計 南方學生 60 20 80 北方學生 10 10 20 合計 70 30 100 (1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”; (2)已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品.現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率. 附:χ2=, P(χ2≥k) 0.100 0.050 0.010 k 2.706 3.841 6.635 【解】 (1)將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得 χ2===≈4.762. 由于4.762>3.841,所以有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”. (2)從5名數(shù)學系學生中任取3人的一切可能結(jié)果所組成的基本事件空間Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}. 其中ai表示喜歡甜品的學生,i=1,2.bj表示不喜歡甜品的學生,j=1,2,3. Ω由10個基本事件組成,且這些基本事件的出現(xiàn)是等可能的. 用A表示“3人中至多有1人喜歡甜品”這一事件,則 A={(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}. 事件A是由7個基本事件組成,因而P(A)=. 【規(guī)律方法】 1.獨立性檢驗的關(guān)鍵是準確計算K2(χ2),而計算k2(χ2)時,要正確繪制22列聯(lián)表. 2.兩個變量的獨立性檢驗,在統(tǒng)計學中有著廣泛的應(yīng)用,學習時一定要結(jié)合實際問題,從現(xiàn)實中尋找例子,增強學習數(shù)學的動力. [創(chuàng)新預(yù)測] 4.(xx安徽高考)某高校共有學生15 000人,其中男生10 500人,女生4 500人.為調(diào)查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時). (1)應(yīng)收集多少位女生的樣本數(shù)據(jù)? (2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率; (3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關(guān)”. 附:K2= P(K2≥k0) 0.10 0.05 0.010 0.005 k0 2.706 3.841 6.635 7.879 【解】 (1)300=90,所以應(yīng)收集90位女生的樣本數(shù)據(jù). (2)由題中頻率分布直方圖得1-2(0.100+0.025)=0.75,所以該校學生每周平均體育運動時間超過4小時的概率的估計值為0.75. (3)由(2)知,300位學生中有3000.75=225人的每周平均體育運動時間超過4小時,75人的每周平均體育運動時間不超過4小時.又因為樣本數(shù)據(jù)中有210份是關(guān)于男生的,90份是關(guān)于女生的.所以每周平均體育運動時間與性別列聯(lián)表如下: 每周平均體育運動時間與性別列聯(lián)表 男生 女生 總計 每周平均體育運動時間不超過4小時 45 30 75 每周平均體育運動時間超過4小時 165 60 225 總計 210 90 300 結(jié)合列聯(lián)表可算得K2==≈4.762>3.841. 所以,有95%的把握認為“該校學生的每周平均體育運動時間與性別有關(guān)”. [總結(jié)提升] 失分盲點 (1)混淆簡單隨機抽樣、系統(tǒng)抽樣、分層抽樣的區(qū)別,不能正確地選擇抽樣方法. (2)不能正確地從頻率分布直方圖中提取相關(guān)的信息,混淆了頻數(shù)與頻率的差異. 答題指導(dǎo) (1)看到抽樣問題,想到三種抽樣的定義以及適用范圍和三者的區(qū)別. (2)看到頻率分布直方圖,想到頻數(shù)與頻率的區(qū)別以及計算方法. 方法規(guī)律 (1)分層抽樣: ①抽樣原則:分層抽樣時,每層抽取的個體可以不一樣多,但必須滿足抽取n=n(i=1,2,…,k)個個體: ②分層原則:層內(nèi)樣本的差異要小,兩層之間的樣本差異要大,且互不重疊. (2)利用統(tǒng)計量K2進行獨立性檢驗的步驟: ①根據(jù)數(shù)據(jù)列出22列聯(lián)表. ②根據(jù)公式計算K2的觀測值k. ③比較觀測值k與臨界值表中相應(yīng)的檢驗水平,作出統(tǒng)計判斷. 通過數(shù)據(jù)分析事物蘊含的規(guī)律 1.數(shù)據(jù)的作用是為了說明實際問題中存在的問題,通過對數(shù)據(jù)的處理(如計算樣本數(shù)據(jù)的均值、方差、極差、中位數(shù)、眾數(shù)等),看出實際問題中蘊含的某種規(guī)律,根據(jù)規(guī)律的利弊確定未來的發(fā)展方向,這是數(shù)據(jù)處理的一個主要方面. 2.在統(tǒng)計中通過對抽取的樣本數(shù)據(jù)進行處理,根據(jù)樣本估計總體的思想,可以對總體作出估計,從而對總體作出評價,給出令人信服的結(jié)論,這就是用數(shù)據(jù)說話. 【典例】 (xx全國新課標Ⅱ高考)某市為了考核甲、乙兩部門的工作情況,隨機訪問了50位市民.根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下: (1)分別估計該市的市民對甲、乙兩部門評分的中位數(shù); (2)分別估計該市的市民對甲、乙兩部門的評分高于90的概率; (3)根據(jù)莖葉圖分析該市的市民對甲、乙兩部門的評價. 【解】 (1)由題中所給莖葉圖知,50位市民對甲部門的評分由小到大排序,排在第25,26位的是75,75,故樣本中位數(shù)為75,所以該市的市民對甲部門評分的中位數(shù)的估計值是75. 50位市民對乙部門的評分由小到大排序,排在第25,26位的是66,68,故樣本中位數(shù)為=67,所以該市的市民對乙部門評分的中位數(shù)的估計值是67. (2)由題中所給莖葉圖知,50位市民對甲、乙部門的評分高于90的比率分別為=0.1,=0.16,故該市的市民對甲、乙部門的評分高于90的概率的估計值分別為0.1,0.16. (3)由題中所給莖葉圖知,市民對甲部門的評分的中位數(shù)高于對乙部門的評分的中位數(shù),而且由題中莖葉圖可以大致看出對甲部門的評分的標準差要小于對乙部門的評分的標準差,說明該市市民對甲部門的評價較高、評價較為一致,對乙部門的評價較低、評價差異較大.(注:考生利用其他統(tǒng)計量進行分析,結(jié)論合理的同樣給分.) 【規(guī)律感悟】 樣本數(shù)據(jù)的均值體現(xiàn)了一種整體的態(tài)勢,樣本數(shù)據(jù)的方差則說明了整體態(tài)勢的穩(wěn)定性,整體態(tài)勢(均值)及其穩(wěn)定性(方差)是樣本數(shù)據(jù)的兩個重要特征數(shù).- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學二輪復(fù)習 統(tǒng)計與統(tǒng)計案例 2019 年高 數(shù)學 二輪 復(fù)習 統(tǒng)計 案例
鏈接地址:http://m.kudomayuko.com/p-3233351.html