九年級數(shù)學(xué)下冊 第24章 圓 24.4 直線與圓的位置關(guān)系 第1課時(shí) 直線與圓的位置關(guān)系及切線的性質(zhì)同步練習(xí)(含解析) 滬科版.doc
《九年級數(shù)學(xué)下冊 第24章 圓 24.4 直線與圓的位置關(guān)系 第1課時(shí) 直線與圓的位置關(guān)系及切線的性質(zhì)同步練習(xí)(含解析) 滬科版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學(xué)下冊 第24章 圓 24.4 直線與圓的位置關(guān)系 第1課時(shí) 直線與圓的位置關(guān)系及切線的性質(zhì)同步練習(xí)(含解析) 滬科版.doc(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
24.4 第1課時(shí) 直線與圓的位置關(guān)系及切線的性質(zhì) 一、選擇題 1.已知⊙O的半徑是8 cm,點(diǎn)O到同一平面內(nèi)直線l的距離為7.5 cm,則直線l與⊙O的位置關(guān)系是( ) A.相交 B.相切 C.相離 D.無法判斷 2.xx湘潭如圖K-9-1,AB是⊙O的切線,B為切點(diǎn),若∠A=30,則∠AOB的度數(shù)為( ) 圖K-9-1 A.45 B.50 C.55 D.60 3.半徑為3的⊙P的圓心坐標(biāo)為(2,4),則⊙P與x軸的位置關(guān)系是( ) A.相交 B.相離 C.相切 D.以上都不是 4.如圖K-9-2,點(diǎn)A,B,C在⊙O上,過點(diǎn)A作⊙O的切線交OC的延長線于點(diǎn)P,∠B=30,OP=3,則AP的長為( ) 圖K-9-2 A.3 B. C. D. 5.如圖K-9-3所示,在△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為( ) 圖K-9-3 A.2.3 B.2.4 C.2.5 D.2.6 6.xx泰安如圖K-9-4,圓內(nèi)接四邊形ABCD的邊AB過圓心O,過點(diǎn)C的切線與邊AD所在直線垂直于點(diǎn)M,若∠ABC=55,則∠ACD的度數(shù)為( ) 圖K-9-4 A.20 B.35 C.40 D.55 7.如圖K-9-5,AB是⊙O的直徑,C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)E,若∠A=30,則sinE的值為( ) 圖K-9-5 A. B. C. D. 8.xx合肥月考如圖K-9-6,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過點(diǎn)C且與邊AB相切的動(dòng)圓與AC,BC分別相交于點(diǎn)P,Q,則線段PQ長的最小值為( ) 圖K-9-6 A.5 B.4 C.4.75 D.4.8 二、填空題 9.如圖K-9-7,在平面直角坐標(biāo)系xOy中,半徑為2的⊙P的圓心P的坐標(biāo)為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切.當(dāng)⊙P位于y軸的左側(cè)且與y軸相切時(shí),平移的距離為________;當(dāng)⊙P位于y軸的右側(cè)且與y軸相切時(shí),平移的距離為________. 圖K-9-7 10.如圖K-9-8,兩同心圓的大圓半徑為5 cm,小圓半徑為3 cm,大圓的弦AB與小圓相切,切點(diǎn)為C,則弦AB的長是________. 圖K-9-8 11.如圖K-9-9,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若BD=-1,則∠ACD=________. 圖K-9-9 12.如圖K-9-10,若以平行四邊形一邊AB為直徑的圓恰好與對邊CD相切于點(diǎn)D,則∠C=________度. 圖K-9-10 三、解答題 13.如圖K-9-11,已知△ABC內(nèi)接于⊙O,CD是⊙O的切線,且與半徑OB的延長線交于點(diǎn)D,∠A=30,求∠BCD的度數(shù). 圖K-9-11 14.xx宿遷如圖K-9-12,AB與⊙O相切于點(diǎn)B,BC為⊙O的弦,OC⊥OA,OA與BC相交于點(diǎn)P. (1)求證:AP=AB; (2)若OB=4,AB=3,求線段BP的長. 圖K-9-12 15.xx沈陽如圖K-9-13,BE是⊙O的直徑,A和D是⊙O上的兩點(diǎn),過點(diǎn)A作⊙O的切線交BE的延長線于點(diǎn)C. (1)若∠ADE=25,求∠C的度數(shù); (2)若AB=AC,CE=2,求⊙O的半徑. 圖K-9-13 16.xx當(dāng)涂縣月考如圖K-9-14,正方形ABCD的邊長為4,⊙O的半徑為1,正方形的中心O1與圓心O在直線l上,⊙O與CD邊相切,⊙O以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s. (1)當(dāng)t在何數(shù)值范圍內(nèi)時(shí),⊙O與CD相交? (2)當(dāng)t為何值時(shí),⊙O與AB相切? 圖K-9-14 綜合探究如圖K-9-15,AB是⊙O的直徑,C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長線于點(diǎn)P,連接AC,BC,PC=2PB. (1)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由; (2)若AD=3,求AB的長. 圖K-9-15 詳解詳析 [課堂達(dá)標(biāo)] 1.[解析] A 設(shè)⊙O的半徑為r,點(diǎn)O到直線l的距離為d,∵d=7.5 cm,r=8 cm,∴d<r,∴直線l與⊙O相交. 2.[解析] D 因?yàn)锳B是⊙O的切線,B為切點(diǎn),則∠ABO=90,又因?yàn)椤螦=30,所以∠AOB=60. 3.[答案] B 4.[解析] D 連接OA,則∠AOP=2∠B=60.∵AP是⊙O的切線,∴∠OAP=90,∴AP=sin∠AOPOP=3=. 5.[解析] B 在△ABC中, ∵AB=5,BC=3,AC=4, ∴AC2+BC2=32+42=52=AB2, ∴∠ACB=90. 如圖,設(shè)切點(diǎn)為D,連接CD, ∵AB是⊙C的切線, ∴CD⊥AB. ∵S△ABC=ACBC=ABCD, ∴ACBC=ABCD, 即CD===2.4, ∴⊙C的半徑為2.4. 故選B. 6.[解析] A ∵圓內(nèi)接四邊形ABCD的邊AB過圓心O, ∴∠ADC+∠ABC=180,∠ACB=90, ∴∠ADC=180-∠ABC=125. ∵過點(diǎn)C的切線與邊AD所在直線垂直于點(diǎn)M, ∴∠MCA=∠ABC=55,∠AMC=90. ∵∠ADC=∠AMC+∠DCM, ∴∠DCM=∠ADC-∠AMC=35, ∴∠ACD=∠MCA-∠DCM=55-35=20. 故選A. 7.[解析] A 如圖,連接OC, ∵CE是⊙O的切線, ∴OC⊥CE. ∵∠A=30, ∴∠BOC=2∠A=60, ∴∠E=90-∠BOC=30, ∴sinE=sin30=.故選A. 8.[解析] D 如圖,設(shè)QP的中點(diǎn)為F,⊙F與AB的切點(diǎn)為D,連接FD,CF,CD. ∵⊙F與AB相切, ∴FD⊥AB. 由勾股定理的逆定理可知△ABC為直角三角形, 且PQ=CF+DF. 當(dāng)線段CF和DF位于同一條直線上時(shí),CF+DF的值最小,最小值為△ABC的斜邊上的高,即4.8. 9.[答案] 1 5 10.[答案] 8 cm [解析] ∵AB是小圓的切線,∴OC⊥AB, ∴AC=BC. 在Rt△BOC中, ∵∠BCO=90,OB=5,OC=3, ∴BC==4(cm), ∴AB=2BC=8 cm.故答案為8 cm. 11.[答案] 112.5 [解析] 連接OC. ∵DC是⊙O的切線, ∴OC⊥DC. ∵BD=-1,OA=OB=OC=1, ∴OD=, ∴CD===1, ∴OC=CD, ∴∠DOC=45. ∵OA=OC, ∴∠OAC=∠OCA, ∴∠OCA=∠DOC=22.5, ∴∠ACD=∠OCA+∠OCD=22.5+90=112.5. 12.[答案] 45 [解析] 如圖,連接OD. ∵CD是⊙O的切線,∴OD⊥CD. ∵四邊形ABCD是平行四邊形,∴AB∥CD, ∴AB⊥OD,∴∠AOD=90. ∵OA=OD,∴∠A=∠ADO=45, ∴∠C=∠A=45.故答案為45. 13.解:如圖,連接OC. ∵CD是⊙O的切線,∴∠OCD=90. 由圓周角定理可知∠BOC=2∠A=60. 又∵OB=OC, ∴∠OCB=(180-60)=60, ∴∠BCD=∠OCD-∠OCB=90-60=30. 14.解:(1)證明:∵AB是⊙O的切線, ∴OB⊥AB, ∴∠OBA=90, ∴∠ABP+∠OBC=90. ∵OC⊥OA,∴∠AOC=90, ∴∠OCB+∠CPO=90. ∵OC=OB,∴∠OCB=∠OBC, ∴∠ABP=∠CPO. ∵∠APB=∠CPO, ∴∠APB=∠ABP, ∴AP=AB. (2)如圖,過點(diǎn)O作OH⊥BC于點(diǎn)H. 在Rt△OAB中, ∵OB=4,AB=3, ∴OA==5. ∵AP=AB=3, ∴OP=2. ∵OC=OB, ∴OC=4. 在Rt△POC中,PC==2 . ∵PCOH=OCOP, ∴OH==, ∴CH==. ∵OH⊥BC, ∴CH=BH, ∴BC=2CH=, ∴BP=BC-PC=-2 =. 15.解:(1)如圖,連接OA, ∵AC是⊙O的切線,OA是⊙O的半徑, ∴OA⊥AC, ∴∠OAC=90. ∵∠ADE=25, ∴∠AOE=2∠ADE=50, ∴∠C=90-∠AOE=90-50=40. (2)∵AB=AC,∴∠B=∠C. ∵∠AOC=2∠B, ∴∠AOC=2∠C. ∵∠OAC=90, ∴∠AOC+∠C=90, ∴3∠C=90,∴∠C=30, ∴OA=OC. 設(shè)⊙O的半徑為r, ∵CE=2,∴r=(r+2), 解得r=2,∴⊙O的半徑為2. 16.解:(1)根據(jù)題意得:當(dāng)t=0或t=2時(shí),⊙O與CD相切, 故當(dāng)0<t<2時(shí),⊙O與CD相交. (2)根據(jù)題意得:當(dāng)t=4時(shí),圓心O到AB的距離d=1,⊙O與AB相切; 當(dāng)t=6時(shí),圓心O到AB的距離d=1,⊙O與AB相切. 綜上所述,當(dāng)t=4或6時(shí),⊙O與AB相切. [素養(yǎng)提升] 解:(1)線段PB,AB之間的數(shù)量關(guān)系為AB=3PB. 理由:連接OC.∵AB是⊙O的直徑, ∴∠ACB=90,∴∠BAC+∠ABC=90. ∵OB=OC,∴∠OCB=∠ABC. 依題意知∠PCB+∠OCB=90, ∴∠PCB=∠PAC. 又∵∠P是公共角,∴△PCB∽△PAC, ∴=,∴PC2=PBPA. 又∵PC=2PB,∴PA=4PB,∴AB=3PB. (2)過點(diǎn)O作OH⊥AD于點(diǎn)H, 則AH=AD=,四邊形OCEH是矩形, ∴OC=HE,∴AE=+OC. 依題意知OC∥AE,∴△PCO∽△PEA, ∴=. ∵AB=3PB,AB=2OB,∴OB=PB, ∴===, ∴OC=,∴AB=5.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 九年級數(shù)學(xué)下冊 第24章 24.4 直線與圓的位置關(guān)系 第1課時(shí) 直線與圓的位置關(guān)系及切線的性質(zhì)同步練習(xí)含解析 滬科版 九年級 數(shù)學(xué) 下冊 24 直線 位置 關(guān)系 課時(shí) 切線 性質(zhì) 同步 練習(xí) 解析
鏈接地址:http://m.kudomayuko.com/p-3350904.html