機械裝備壽命的可靠構(gòu)建與優(yōu)化設(shè)計
摘要:維護設(shè)計對于機電產(chǎn)品或系統(tǒng)的壽命周期來講,是一種重要的設(shè)計方法?;跈C構(gòu)作用可能會出現(xiàn)失敗的幾率,機械系統(tǒng)的可靠性建模被發(fā)展了起來。基于部件可能會出現(xiàn)失敗的情況,機械系統(tǒng)的可靠性建模就被發(fā)展了起來而系統(tǒng)最小的可靠性和最穩(wěn)定的可靠性系數(shù)被定義為機械系統(tǒng)在壽命周期內(nèi)大致的可靠性。其次,提出維護的一個基于可靠性的設(shè)計最優(yōu)化模型,總生活周期消耗被考慮作為設(shè)計目標(biāo)和系統(tǒng)可靠性。最終,維護的基于可靠性的設(shè)計最優(yōu)化方法通過組分設(shè)計示范被說明。
關(guān)鍵詞:維護; 可靠性; 模擬; 優(yōu)化設(shè)計
1. 介紹
在一個機械產(chǎn)品期間的生命周期,維護是非常重要的,可以保持產(chǎn)品可利用時間和延長它的壽命。關(guān)于維護的研究機械產(chǎn)品的大致被分類為以下三種:(1)如何擬定維護政策或(和)如何優(yōu)選考慮系統(tǒng)可靠性和維修費用的維護期間[1?4]。(2)發(fā)展維護方法和工具保證系統(tǒng)維護到低成本和短的修理時間,例如發(fā)展特別的維護工具[5?9]。(3)在設(shè)計程序期間,為維護設(shè)計,系統(tǒng)可維護性地被評估和被改進[10?12]。維護在設(shè)計之初就開始了。明顯地,維護的設(shè)計方法論,是其中一個在產(chǎn)品的生命周期的最佳的有效的維護手段,吸引許多研究者的興趣。然而,維護設(shè)計的研究主要在于兩個領(lǐng)域。一個是在產(chǎn)品設(shè)計選擇的可維護性評估; 另一個是為方便維護設(shè)計的特殊結(jié)構(gòu)的零件。在本文中,根據(jù)時間對失敗零件的密度函數(shù),要調(diào)查接受維護的一個機械系統(tǒng)的零件的服務(wù)壽命。然后機械系統(tǒng)的可靠性模型被重建并且被仿真。最終,維護的新穎的設(shè)計最優(yōu)化方法通過一個鏈?zhǔn)皆O(shè)計被發(fā)展并說明。
2. 可靠性塑造維護的機械系統(tǒng)
2.1模型假定
在一個機械系統(tǒng)運行一段時間之后,由于失敗的被替換分開,主要可靠模型是不適用于改變系統(tǒng),因而應(yīng)重建可靠性模型。在本文談?wù)摰臋C械系統(tǒng)有以下特征:①一個系統(tǒng)包括很多同樣的零件,零件的數(shù)量在系統(tǒng)期間的一生周期是恒定的。②所有零件的時間對失敗密度分布函數(shù)是相同的,并且替換件也和原始的零件一樣有失敗分布函數(shù)。③每個部分的失敗是一個任意的獨立事件,也就是說一部分的失敗不影響其他部分在系統(tǒng)的中的失敗。
2.2為維護的可靠性建模
一個機械系統(tǒng)的可靠性取決于它的零件,可靠性和失敗的可能性取決于他們的工作壽命。在這里,根據(jù)時間的密度分布函數(shù)對零件的失效,應(yīng)計算好部件在機械系統(tǒng)中工作壽命,然后開發(fā)機械系統(tǒng)的可靠性模型。在一個機械系統(tǒng)的服務(wù)期間,發(fā)生故障的有些零件要求及時替換,因此機械系統(tǒng)的部分的壽命分布被改變了。推測在機械系統(tǒng)運行一段時間后tn = nτ,其中τ是維護活動之間的時間,即維護間隔時間之后, τ單位可以是幾小時、幾天、幾個月或者幾年。 如果pi (pt)代表零件的年齡比例在n用年齡iτ,因而部分的年齡分布在時間上表示為矩陣{p0 (tn), p1 (tn), L、pi (tn), L, pn (tn)}。零件的失敗密度函數(shù)和部分的壽命分布在系統(tǒng)的確定壽命分布在下次或者在下一段時間區(qū)內(nèi)留下來的部分目錄。壽命分布取決于每一段時間內(nèi)每一部分部件在下一段時間區(qū)內(nèi)失效的幾率。要發(fā)現(xiàn)零件的失效可能性失敗密度函數(shù)是從零開始的。存留下來的數(shù)量在下一個時間段得到提升,失效的部分被新的部件替換被重新返回第一個盒子里。
最初的,所有零件是新的病在第一個盒子里。 即在t0=0,在第一個箱子的部分是
P0(t0)=1 (1)
在t1=τ,第一個箱子的年齡分?jǐn)?shù)和第二個箱子代表:
P1(t1)=p0(t0)[1-∫f(x)dx]
P0(t1)=p0(t0) ∫f(x)dx (2)
兩種壽命盒子內(nèi)的部分,生存并且到下個壽命箱子,而不合格部件的部分被新的零件替換,從這兩個箱子到第一個箱子。
在T2 = 2τ,計算前三個箱子的比例
P2(t2)=p1(t1)[1-∫f(x)dx]
P1(t2)=p0(t1)[1-∫f(x)dx]
P0(t2)= p1(t1) ∫f(x)dx+ p0(t1) ∫f(x)dx (3)
……
因此,通過使用以下等式,在tn = nτ時,在每個箱內(nèi)的部分部件將被進行如下計算:
當(dāng)P0(tn)是壽命在tn的部件總量的一小部分時,代表了部件剛剛被投入使用。這就意味著P0(tn)是這部分的失效率,或者說是小部件的代替。換種說法就是說,這些在第一個盒子里的一小部分部件在t0,t1,L,tn是用來取代失效部件的新部件。
一系列的系統(tǒng)包含了N個有相同失效概率分布的部件,每一個部分只是一系列的單元,每個單元是相對獨立的。在同一系列系統(tǒng)里任何一個單元的失效表現(xiàn)為一個系統(tǒng)的失效,按照可能增長的原則,一系列系統(tǒng)的可靠性就是:
由于組成系統(tǒng)的部件數(shù)量是恒定的,在此,機械系統(tǒng)維護的系統(tǒng)穩(wěn)定性被定義為:
3. 維護可靠性的模擬仿真
模擬仿真的結(jié)果顯示了系統(tǒng)的穩(wěn)定性在工作期間是不斷變化著的。一個系統(tǒng)的可靠性經(jīng)歷了幾次波動,有時是最大值而有時是最小值,最終達到一個穩(wěn)定的值。系統(tǒng)穩(wěn)定性的震動會周期性的衰減,這段時間是部件μ的預(yù)期壽命(根據(jù)韋伯分布,參數(shù)β近似于大α的預(yù)期壽命)。對于機械系統(tǒng)的設(shè)計和維護,系統(tǒng)穩(wěn)定性的最小值跟穩(wěn)定值是最重要的。系統(tǒng)的最低穩(wěn)定性出現(xiàn)在初始階段,但系統(tǒng)可靠性的穩(wěn)定值出現(xiàn)在運行一段很長時間后。在此,為了后面方便討論,系統(tǒng)維護的最低可靠性和穩(wěn)定可靠性被定義為基于如圖6所示的系統(tǒng)穩(wěn)定性的仿真結(jié)果中。
由于它發(fā)生在初始階段,系統(tǒng)最小可靠性會在從t=0到t=2μ的仿真結(jié)果的不相關(guān)聯(lián)的可靠性值中找到。最小可靠性被定義為:
假設(shè)仿真時間是T0和Rmax、Rmin分別代替了在t∈[T ,T + 2μ]的最大值和最小值。一旦當(dāng)最大可靠性值和最小可靠性值的比值Rmin/Rmax>ε滿足,系統(tǒng)可靠性被認(rèn)為在T0時達到一個穩(wěn)定的值。因此,系統(tǒng)穩(wěn)定性或者說穩(wěn)定可靠性被定義為:
ε ≤ 1是穩(wěn)定的要求,通常是98%。如果T0不存在,系統(tǒng)穩(wěn)定性是不穩(wěn)定的。
4. 可靠性的優(yōu)化設(shè)計模型庫
對于維護的一個基于可靠性優(yōu)化設(shè)計模型被用來跟耗費維護的系統(tǒng)可靠性和壽命周期消費來代替,上述模型對于計算系統(tǒng)的部件替換率,最小可靠性和系統(tǒng)可靠性有幫助。在這個模型里,壽命周期的消耗被認(rèn)為是一個設(shè)計目標(biāo),而系統(tǒng)的可靠性被認(rèn)為是設(shè)計約束條件。我們的工作目標(biāo)就是要去找到一個最小消耗的設(shè)計方法并同時滿足這個系統(tǒng)規(guī)定參數(shù)。
4.1 模型的壽命周期損耗
機械系統(tǒng)的壽命周期損耗包含著產(chǎn)品成本和維護成本。系統(tǒng)維護成本是來源于以下所列的項目:(1)替代部件的成本;(2)操作損耗包括替換部件時的資源損耗(比如: 勞動、裝備);(3)替換部件時的生產(chǎn)間隔造成的間接成本;(4)替換部件的準(zhǔn)備工作成本。在前面的三個項目參與了每次維護時替代部件的數(shù)量。替換越多的部件就會耗費越多的資源,占用越多的生產(chǎn)時間,因而帶來巨大的損失并增長了維護成本。最后一項沒有參與替換部件的數(shù)量上但參與了每次維護跟替換上。結(jié)果,機械系統(tǒng)的維護成本被保密為替換部件數(shù)量上的成本考慮和維護次數(shù)上的成本考慮。在這種方法下,對于一個包含固定數(shù)量N部件的機械系統(tǒng),在它運行了一段時間M,它的壽命周期損耗模型包含了生產(chǎn)成本和維護成本,表示為:
在式子9,C是系統(tǒng)內(nèi)每一部分部件總的壽命周期損耗。c0, c1, c2分別表示部件生產(chǎn)系數(shù),更換成本系數(shù)和準(zhǔn)備成本系數(shù),這些數(shù)據(jù)是統(tǒng)計分析領(lǐng)域的數(shù)據(jù)。m = M /τ,M代表著系統(tǒng)壽命。式子10等號右邊的首項代表系統(tǒng)的生產(chǎn)成本,式子9右邊的第二項表示系統(tǒng)的維護成本。在式子9里,由于部件的替換成本包含著不僅僅是替換失效部件的部件生產(chǎn)成本,而且有用于資源的成本和用于替換的間接成本。顯然,式子10里表示的不是絕對成本,而是相對成本。式子9也可以表示為:
4.2 基于可靠性的設(shè)計與優(yōu)化
假設(shè)系統(tǒng)的一類部件有n種設(shè)計方案。X= (x1,x2,L,xn), 它們的失效密度函數(shù)被表示為每一種方案,X= (x1,x2,L,xn) 它們的失效密度函數(shù)被表示為F=(f1(t),f2(t),L,fn(t)) 作為每一個方案。
對于一個維護的固定間隔τ0,它的基于可靠性優(yōu)化設(shè)計的模型I的維護被表示為:
顯然的,最小壽命周期損耗和可靠性取自上述模型的一段特定的時間段。對于任何一個的n種設(shè)計方案,它的成本和可靠性取決于維護間隔τ。最小的成品成本可以取自于最優(yōu)化的維護間隔。所謂的最佳的維護間隔,顧名思義地,就是將維護間隔優(yōu)化到最小的壽命周期成本,因此基于可靠性設(shè)計和優(yōu)化的模型Ⅱ的維護克表示為:
在式子11和式子12里,C是取自式子9或式子10,Rm、Rs分別表示系統(tǒng)的最小可靠性和穩(wěn)定的可靠性。Rm0、Rs0是系統(tǒng)允許的可靠性值。通常來講,Rm0= (0.75~0.95)Rs0,這也就意味著系統(tǒng)穩(wěn)定性在整個壽命周期內(nèi)允許在某一定的程度上變化,但變化范圍不會超過穩(wěn)定可靠性值的5%~25%。
4.3 根據(jù)系統(tǒng)可靠性模仿的設(shè)計最優(yōu)化
顯然,系統(tǒng)平穩(wěn)的可靠性、極小的可靠性和部分在設(shè)計模型的替換率可以從可靠性模仿而獲得。所以,維護的設(shè)計最優(yōu)化是基于模擬的設(shè)計方法。在設(shè)計模型,可靠性模仿的輸入的情況是時間對失敗密度系統(tǒng)部分F,系統(tǒng)服務(wù)生活M的分布函數(shù),并且生活周期消耗系數(shù)是c0,c1,c2。
為固定的間隔時間維護,輸入的情況在固定的維護間隔時間τ 0增加。維護的時間與M/τ 0明顯地是相等的在一生周期期間。 至于維護間隔時間需要被優(yōu)選的情況,維護的時間是獲得的被環(huán)繞的M/τ在另外維護間隔時間。另外,系統(tǒng)的設(shè)計選擇必須滿足系統(tǒng)可靠性的要求,因而Rm, Rs得出來了。 終于,一個優(yōu)選設(shè)計選擇和它極小的信度、平穩(wěn)的可靠性和生活周期費用被得出了。 設(shè)計最優(yōu)化流程圖維護的顯示作為式子二,設(shè)計最優(yōu)化二個模型維護的是聯(lián)合。最可能,一個模型的解答通常是與另一個模型不同。
5. 設(shè)計示范
有鏈?zhǔn)絺魉蜋C鏈接圓環(huán)的三個設(shè)計選擇,產(chǎn)品使用期限M等于100個月。時間的密度分布函數(shù)對圓環(huán)的失敗的是Weibull的作用,并且他們的發(fā)行參量和費用系數(shù)生命周期在表1被列出如下。
假設(shè)極小的可靠性和平穩(wěn)的可靠性的要求是R0 = 0.85, R0 = 0.75。 考慮系統(tǒng)維護間隔時間從一系列的等效區(qū)別價值被挑選,離散最優(yōu)化方法被采取。兩個設(shè)計模型的模仿結(jié)果維護在表2.圖8到圖11被列出說明系統(tǒng)可靠性和總生活周期費用隨系統(tǒng)的工作次數(shù)變化。
注: τ 0是間隔時間固定周期維護的設(shè)計模型Eq (11),和最宜的間隔時間優(yōu)選周期維護的設(shè)計模型Eq(12).
當(dāng)系統(tǒng)維護間隔固定,最宜的設(shè)計選擇如顯示從模仿結(jié)果在表2列出了,Eq(11)是選擇τ 0 = 1 2 x。其中1x不滿足系統(tǒng)可靠性壓抑,并且共計選擇2 x的壽命消耗低于選擇3 x。 從這個例子,了解到不可能有將遇見系統(tǒng)可靠性為不適當(dāng)?shù)墓潭ǖ木S護間隔時間壓抑的設(shè)計選擇。當(dāng)系統(tǒng)維護間隔時間被優(yōu)選時,最宜的設(shè)計選擇被獲得了。Eq(12)是選擇3 x。 在這個例子中,所有設(shè)計選擇符合系統(tǒng)可靠性的要求,并且共計選擇3 x的壽命消耗是最低的,相應(yīng)地系統(tǒng)維護間隔時間τ *1.8選擇了3 x。 顯示易變的維護周期警察導(dǎo)致設(shè)計選擇另外選擇,并且共計生活費用可以是通過優(yōu)選維護間隔時間減少。
幾個有趣的結(jié)果能從圖3到圖6中被找到。.
(1)當(dāng)固定的間隔時間(τ0 = 1)是堅定的,選擇的系統(tǒng)可靠性τ0 = x2不僅滿足所有設(shè)計要求,而且接近對要求價值。選擇x1的可靠性滿足平穩(wěn)的可靠性的要求,但是不滿足極小的可靠性的要求竟管它最便宜。 雖然選擇3 x滿足系統(tǒng)可靠性的要求,平穩(wěn)的可靠性或極小值可靠性,它有最高的總壽命周期消耗。
圖3.設(shè)計選擇的可靠性模仿固定的維護間隔時間
圖4. 設(shè)計選擇的生活周期費用模仿固定的維護間隔時間
(2)當(dāng)維護間隔時間被優(yōu)選時,最宜的間隔時間的選擇根據(jù)系統(tǒng)可靠性的令人滿意要求前提。 至于選擇1 x,為了符合系統(tǒng)可靠性的要求,維護間隔時間減退,但是它的總生活費用增加有些。 為選擇τ * = 0.8x2,維護間隔時間在優(yōu)化以后保留常數(shù),也,因此意味著間隔時間τ =1是這個選擇的最宜的間隔時間。 為選擇3 x,由于優(yōu)化、維護間隔時間增量、τ =1.8和在系統(tǒng)可靠性和設(shè)計要求之間的區(qū)別減少,因而它有更低的總生活周期費用。 其外,三個設(shè)計選擇被優(yōu)選,系統(tǒng)可靠性和總生活周期費用他們的曲線趨向?qū)谢蛨怨绦裕⑶屹M用區(qū)別在三個選擇之中的減少。
圖5.設(shè)計選擇的可靠性模仿最宜的維護間隔時間
圖6.設(shè)計選擇的生活周期費用模仿最宜的維護間隔時間的
(3) 當(dāng)系統(tǒng)要求高的可靠性時,相應(yīng)地,維護間隔時間將減少,并且維修費用將上升。 相反,當(dāng)系統(tǒng)要求低可靠性,相應(yīng)地,維護間隔時間將延遲,因此維修費用將減少,系統(tǒng)維護費用減退受系統(tǒng)可靠性要求支配。系統(tǒng)可靠性平穩(wěn)的價值和最小值隨著維護間隔時間的增加單調(diào)減少總生活周期費用隨著維護間隔時間的增加而減少。結(jié)果,穩(wěn)定的極小的間隔時間系統(tǒng)可靠性價值和最小值滿足設(shè)計要求將得到設(shè)計選擇的極小的總生活周期費用。必須指出設(shè)計選擇的系統(tǒng)可靠性比要求價值不是相等與,而是少許更多由于離散最優(yōu)化的采用。
(4) 當(dāng)系統(tǒng)的設(shè)計選擇決定時,設(shè)計選擇最宜的選擇取決于不僅維護系統(tǒng)可靠性和系統(tǒng)服務(wù)生活的間隔時間而且還有要求。 例如,當(dāng)間隔時間被固定時(τ 0 = 1),并且需要的系統(tǒng)可靠性減少從對,從Eq.(11)獲得的最宜的設(shè)計選擇是選擇0.75 m R = 0.70 m R = x1而不是選擇2 x。當(dāng)系統(tǒng)服務(wù)生活轉(zhuǎn)換從M = 100到50時,最宜的設(shè)計選擇被獲得了。 Eq(12)是替換3 x而選擇1 x顯示作為圖6。這就意味著,因為高質(zhì)量材料做的零件有長的產(chǎn)品使用期限,設(shè)計選擇得到更低的總壽命周期成本,竟管他們會有更高的生產(chǎn)成本。
6. 結(jié)論
在產(chǎn)品期間的生命周期維護是其中一項重要任務(wù)。零件的替換將導(dǎo)致系統(tǒng)可靠性和生活周期費用的變動?;诹慵臅r間失效密度函數(shù),平穩(wěn)的可靠性、極小的可靠性和生活周期費用可以通過可靠性模型的系統(tǒng)可靠性的重建和模仿得到。本文開發(fā)維護的基于可靠性的設(shè)計最優(yōu)化方法學(xué),總生活周期費用被看待,當(dāng)作為設(shè)計的設(shè)計對象和系統(tǒng)可靠性壓抑。它提供一種新的方法做在機械系統(tǒng)之間的可靠性和總生活周期費用的一種交易在設(shè)計最優(yōu)化的維護。
鳴謝
這項工作得到了湖南科學(xué)技術(shù)大學(xué)的劉博士的大力支持。 筆者相當(dāng)感激能得到其參考資料的注釋,極大地改進了目前這項工作。
參考文獻
[1] B.Y. Liu, Y.T. Fang, J.X. Wei, et al. “Reliability and check replacement policy of mechanical equipment under predictive maintenance”. Chinese Journal of Mechanical Engineering. 2006.Wuhan, vol.42,pp.30- 35,February .
[2] H. Zhang , J. Wang, F.S Wen, et al. “Optimal scheduling of condition based maintenance for electric equipment considering reliability and economy”. Electric Power Science and Engineering. Beijing, 2006. vol..21, pp.8-13.
[3] Q. He, “Mathematical model of preventive maintenance period”. Transactions of the Chinese Society of Agricultural Machinery.Beijing, 2005, Vol..36, pp.153-154.
[4] H. Wang , H. Pham, “Some maintenance models and availability with imperfect maintenance in production systems”. Annals of Operations Research. Springer US,1999, Vol..91, pp. 305-318.
[5] Y.H. Yang, Y.C. Feng , “Complex repairable system reliability and maintainability simulation”. Acta Simulata Systematica Sinica. Beijing, 2002, Vol.14, pp.978-982.
[6] W.S. Yin, W.G. Zhu and S.Q Li, “Virtual system of training and maintaining oriented to the life cycle of mechanical and electronical products,” China Mechanical Engineering, Wuhan,2004, Vol.15, pp.1530-1532.
[7] Y.L. Li, S.X. Pan , “Remote dynamic assembling disassembling process simulation system for mechanical product maintenance”, Journal of Computer Aided Design & Computer Graphics, 2005, Vol.17, pp.2744- 2750.
[8] J. Liu, D.J. Yu, R. Li, et al, “Research on general stochastic Petri net based maintenance system simulation and optimization”, Chinese Journal of Mechanical Engineering, 2005, Vol.41, pp.164-169.
[9] D. Chaudhuri, O. Mohammed, “Optimal inspection and replacement models for systems with increasing minimal repair cost,” International Journal of Reliability, Quality and Safety Engineering, 1999, Vol.6, pp.155-171.
[10] M.Z. Gan, “Maintainability design and validation” , Beijing:Defence Industry Publishing House,1995.
[11] E.G. Welp, U. Lindemann, X.S. Lv, “Support instructions for a recyclable and maintainable design,” Engineering Design, 2002, Vol.9, pp.77-88.
[12] H. Zhou, M.Z. Gan, A.Q. Liu, et al. “Maintainability design of product based on concurrent engineering,” Journal of Machine Design, 2003 ,Vol..20, pp.3-5.
[13] Y. Liu, H.Z. Huang, “Comment on ‘‘A framework to practical predictive maintenance modeling for multi-state systems’’ by Tan C.M. and Raghavan N. [Reliab Eng Syst Saf 2008; 93(8): 1138–50],” Reliability Engineering and System Safety, 2009, Vol.94, No.3, pp.776-780.
[14] H.Z. Huang, X. Zhang, “Design optimization with discrete and continuous variables of aleatory and epistemic uncertainties,” ASME Journal of Mechanical Design, 2009, Vol.131, pp.031006-1-031006-8.
鏈接地址:http://m.kudomayuko.com/p-3424013.html